Anonym Submission
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
# from datasets import load_dataset
|
| 5 |
+
import gradio as gr
|
| 6 |
+
# from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url
|
| 7 |
+
# from huggingface_hub.repocard import metadata_load
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
DATASETS = {
|
| 12 |
+
"samsum": "SAMSum",
|
| 13 |
+
"cnn": "CNN/DailyMail",
|
| 14 |
+
"xsum": "XSum",
|
| 15 |
+
"billsum": "BillSum",
|
| 16 |
+
"multinews": "Multi-News",
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
MODELS = [
|
| 20 |
+
"PEGASUS", #0
|
| 21 |
+
"PEGASUS-X", #1
|
| 22 |
+
"MTL-ABS", #2
|
| 23 |
+
"BART SDPT/DAPT/TAPT", #3
|
| 24 |
+
"Prefix-tuning", #4
|
| 25 |
+
"ExtraPhrase", #5
|
| 26 |
+
"Primera", #6
|
| 27 |
+
"Se3", #7
|
| 28 |
+
"DADS", #8
|
| 29 |
+
"LML-LRS", #9
|
| 30 |
+
"PSP", #10
|
| 31 |
+
"Athena", #11
|
| 32 |
+
"SPEC", #12
|
| 33 |
+
"Z-Code++", #13
|
| 34 |
+
"DIONYSUS", #14
|
| 35 |
+
"COMPO", #15
|
| 36 |
+
"UNISUMM", #16
|
| 37 |
+
"Centrum", #17
|
| 38 |
+
"ParaSum", #18
|
| 39 |
+
"EFLRAS", #19
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
REPOS_PAPERS = {
|
| 43 |
+
"PEGASUS": "https://github.com/google-research/pegasus", #0
|
| 44 |
+
"PEGASUS-X": "https://github.com/google-research/pegasus", #1
|
| 45 |
+
"MTL-ABS": "https://github.com/YiSyuanChen/MTL-ABS", #2
|
| 46 |
+
"BART SDPT/DAPT/TAPT": "https://github.com/TysonYu/AdaptSum", #3
|
| 47 |
+
"Prefix-tuning": "https://github.com/XiangLi1999/PrefixTuning", #4
|
| 48 |
+
"ExtraPhrase": "https://github.com/loem-ms/ExtraPhrase", #5
|
| 49 |
+
"Primera": "https://github.com/allenai/PRIMER", #6
|
| 50 |
+
"Se3": "https://ojs.aaai.org/index.php/AAAI/article/view/21357", #7
|
| 51 |
+
"DADS": "https://aclanthology.org/2022.findings-naacl.53.pdf", #8
|
| 52 |
+
"LML-LRS": "https://dl.acm.org/doi/pdf/10.1145/3477495.3531908", #9
|
| 53 |
+
"PSP": "https://aclanthology.org/2022.coling-1.553.pdf", #10
|
| 54 |
+
"Athena": "https://www.sciencedirect.com/science/article/pii/S0925231223004794?casa_token=ptLMl-LZLbQAAAAA:9Aq7HEUf6dRrIg5MTj4hZm2eaWJSeTDKmnXxS52fkZ131ejkYHdZgGimL0TFCFXy57qF1k9KTKE", #11
|
| 55 |
+
"SPEC": "https://github.com/YiSyuanChen/SPEC", #12
|
| 56 |
+
"Z-Code++": "https://arxiv.org/pdf/2208.09770.pdf", #13
|
| 57 |
+
"DIONYSUS": "https://arxiv.org/pdf/2212.10018.pdf", #14
|
| 58 |
+
"COMPO": "https://github.com/ozyyshr/Compo", #15
|
| 59 |
+
"UNISUMM": "https://github.com/microsoft/UniSumm", #16
|
| 60 |
+
"Centrum": "https://github.com/ratishsp/centrum", #17
|
| 61 |
+
"ParaSum": "https://link.springer.com/chapter/10.1007/978-3-031-40289-0_9", #18
|
| 62 |
+
"EFLRAS": "https://github.com/NLPlab-skku/SummaryXAI-QA/tree/main/Low-Resource-Sum", #19
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
TAXONOMY = [
|
| 66 |
+
"Pre-training", #0
|
| 67 |
+
"Centroid-based pre-training", #1
|
| 68 |
+
"Data augmentation", #2
|
| 69 |
+
"Segmentation", #3
|
| 70 |
+
"Meta-learning", #4
|
| 71 |
+
"Meta-transfer", #5
|
| 72 |
+
"Extractive summarization", #6
|
| 73 |
+
"Prefix tuning", #7
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
MODEL_TO_TAXONOMY = [
|
| 77 |
+
TAXONOMY[0],
|
| 78 |
+
TAXONOMY[0],
|
| 79 |
+
TAXONOMY[5],
|
| 80 |
+
TAXONOMY[0],
|
| 81 |
+
TAXONOMY[7],
|
| 82 |
+
TAXONOMY[2],
|
| 83 |
+
TAXONOMY[0],
|
| 84 |
+
TAXONOMY[3],
|
| 85 |
+
TAXONOMY[2],
|
| 86 |
+
TAXONOMY[4],
|
| 87 |
+
TAXONOMY[0],
|
| 88 |
+
TAXONOMY[3],
|
| 89 |
+
TAXONOMY[5],
|
| 90 |
+
TAXONOMY[0],
|
| 91 |
+
TAXONOMY[0],
|
| 92 |
+
TAXONOMY[2],
|
| 93 |
+
TAXONOMY[0],
|
| 94 |
+
TAXONOMY[1],
|
| 95 |
+
TAXONOMY[6],
|
| 96 |
+
TAXONOMY[5],
|
| 97 |
+
]
|
| 98 |
+
|
| 99 |
+
model_tax = np.array([MODELS, MODEL_TO_TAXONOMY]).transpose()
|
| 100 |
+
|
| 101 |
+
SAMSUM_DATA = [
|
| 102 |
+
[model_tax[14][0], "base", model_tax[14][1], 0, 0, 39.60, 15.40, 30.10],
|
| 103 |
+
[model_tax[14][0], "large", model_tax[14][1], 0, 0, 41.30, 16.20, 30.90],
|
| 104 |
+
[model_tax[3][0], "SDPT w/RecAdam", model_tax[3][1], 300, 0, 45.23, 19.43, 35.37],
|
| 105 |
+
[model_tax[3][0], "DAPT", model_tax[3][1], 300, 0, 41.22, 17.88, 32.40],
|
| 106 |
+
[model_tax[3][0], "TAPT w/RecAdam", model_tax[3][1], 300, 0, 41.34, 17.88, 32.31],
|
| 107 |
+
[model_tax[13][0], "large", model_tax[13][1], 0, 0, 26.50, 7.90, 20.50],
|
| 108 |
+
[model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.27, 17.40, 33.70],
|
| 109 |
+
[model_tax[13][0], "large", model_tax[13][1], 100, 0, 47.60, 22.30, 38.70],
|
| 110 |
+
[model_tax[16][0], "", model_tax[16][1], 0, 0, 22.17, 6.88, 17.08],
|
| 111 |
+
[model_tax[16][0], "", model_tax[16][1], 10, 0, 43.89, 18.53, 34.76],
|
| 112 |
+
[model_tax[16][0], "", model_tax[16][1], 100, 0, 46.93, 20.65, 37.28],
|
| 113 |
+
[model_tax[8][0], "", model_tax[8][1], 10, 0, 32.50, 12.00, 27.00],
|
| 114 |
+
[model_tax[8][0], "", model_tax[8][1], 100, 0, 43.90, 19.70, 36.10],
|
| 115 |
+
[model_tax[15][0], "base, self-training", model_tax[15][1], 147, 0, 45.42, 21.23, 41.42],
|
| 116 |
+
[model_tax[15][0], "large, self-training", model_tax[15][1], 147, 0, 49.78, 24.65, 45.41],
|
| 117 |
+
[model_tax[15][0], "base, joint-training", model_tax[15][1], 147, 0, 44.89, 20.64, 40.58],
|
| 118 |
+
[model_tax[15][0], "large, joint-training", model_tax[15][1], 147, 0, 49.14, 23.45, 44.35],
|
| 119 |
+
[model_tax[12][0], "", model_tax[12][1], 10, 0, 46.06, 20.90, 40.34],
|
| 120 |
+
[model_tax[12][0], "", model_tax[12][1], 100, 0, 51.94, 24.75, 46.97],
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
CNN_DATA = [
|
| 124 |
+
[model_tax[13][0], "large", model_tax[13][1], 0, 0, 40.00, 17.30, 25.30],
|
| 125 |
+
[model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.00, 17.30, 25.30],
|
| 126 |
+
[model_tax[13][0], "large", model_tax[13][1], 100, 0, 41.10, 18.40, 27.50],
|
| 127 |
+
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 32.90, 13.28, 29.38],
|
| 128 |
+
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 37.25, 15.84, 33.49],
|
| 129 |
+
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 40.28, 18.21, 37.03],
|
| 130 |
+
[model_tax[1][0], "large", model_tax[1][1], 0, 0, 30.22, 11.88, 28.31],
|
| 131 |
+
[model_tax[1][0], "large", model_tax[1][1], 10, 0, 36.12, 13.70, 30.26],
|
| 132 |
+
[model_tax[1][0], "large", model_tax[1][1], 100, 0, 38.40, 17.02, 36.75],
|
| 133 |
+
[model_tax[10][0], "", model_tax[10][1], 300, 0, 38.31, 15.94, 25.41],
|
| 134 |
+
[model_tax[5][0], "", model_tax[5][1], 1000, 0, 34.47, 12.91, 31.36],
|
| 135 |
+
[model_tax[9][0], "", model_tax[9][1], 10, 0, 39.34, 16.53, 25.40],
|
| 136 |
+
[model_tax[9][0], "", model_tax[9][1], 100, 0, 39.94, 16.96, 26.09],
|
| 137 |
+
[model_tax[19][0], "", model_tax[19][1], 10, 0, 39.50, 16.80, 25.72],
|
| 138 |
+
[model_tax[19][0], "", model_tax[19][1], 100, 0, 40.53, 17.61, 26.64],
|
| 139 |
+
[model_tax[18][0], "", model_tax[18][1], 200, 0, 40.81, 17.78, 36.94],
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
BILLSUM_DATA = [
|
| 143 |
+
[model_tax[0][0], "large", model_tax[0][0], 0, 0, 41.02, 17.44, 25.24],
|
| 144 |
+
[model_tax[0][0], "large", model_tax[0][0], 10, 0, 40.48, 18.49, 27.27],
|
| 145 |
+
[model_tax[0][0], "large", model_tax[0][0], 100, 0, 44.78, 26.40, 34.40],
|
| 146 |
+
[model_tax[1][0], "large", model_tax[1][1], 0, 0, 41.32, 18.04, 25.11],
|
| 147 |
+
[model_tax[1][0], "large", model_tax[1][1], 10, 0, 42.55, 18.97, 26.92],
|
| 148 |
+
[model_tax[1][0], "large", model_tax[1][1], 100, 0, 46.48, 27.77, 36.53],
|
| 149 |
+
[model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 10, 0, 46.94, 23.04, 29.29],
|
| 150 |
+
[model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 100, 0, 50.4, 27.73, 33.74],
|
| 151 |
+
[model_tax[11][0], "", model_tax[11][1], 10, 0, 47.57, 24.14, 30.35],
|
| 152 |
+
[model_tax[11][0], "", model_tax[11][1], 100, 0, 51.59, 29.36, 35.04],
|
| 153 |
+
[model_tax[9][0], "", model_tax[9][1], 10, 0, 46.64, 25.07, 30.90],
|
| 154 |
+
[model_tax[9][0], "", model_tax[9][1], 100, 0, 48.18, 27.18, 33.28],
|
| 155 |
+
[model_tax[2][0], "", model_tax[2][1], 10, 0, 41.22, 18.61, 26.33],
|
| 156 |
+
[model_tax[2][0], "", model_tax[2][1], 100, 0, 45.29, 22.74, 29.56],
|
| 157 |
+
[model_tax[19][0], "", model_tax[19][1], 10, 0, 46.64, 25.07, 30.90],
|
| 158 |
+
[model_tax[19][0], "", model_tax[19][1], 100, 0, 48.18, 27.18, 33.28],
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
XSUM_DATA = [
|
| 162 |
+
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 19.27, 3.00, 12.72],
|
| 163 |
+
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 19.39, 3.45, 14.02],
|
| 164 |
+
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 39.07, 16.44, 31.27],
|
| 165 |
+
[model_tax[10][0], "", model_tax[10][1], 300, 0, 32.86, 11.27, 25.64],
|
| 166 |
+
[model_tax[16][0], "", model_tax[16][1], 0, 0, 20.72, 3.62, 16.56],
|
| 167 |
+
[model_tax[16][0], "", model_tax[16][1], 10, 0, 26.10, 7.20, 19.92],
|
| 168 |
+
[model_tax[16][0], "", model_tax[16][1], 100, 0, 33.33, 11.36, 25.85],
|
| 169 |
+
[model_tax[9][0], "", model_tax[9][1], 10, 0, 32.35, 11.86, 25.33],
|
| 170 |
+
[model_tax[9][0], "", model_tax[9][1], 100, 0, 35.54, 13.94, 27.79],
|
| 171 |
+
[model_tax[19][0], "", model_tax[19][1], 10, 0, 32.65, 12.10, 25.82],
|
| 172 |
+
[model_tax[19][0], "", model_tax[19][1], 100, 0, 36.51, 14.55, 29.01],
|
| 173 |
+
[model_tax[12][0], "", model_tax[12][1], 10, 0, 32.74, 10.90, 24.86],
|
| 174 |
+
[model_tax[12][0], "", model_tax[12][1], 100, 0, 35.69, 12.88, 27.25],
|
| 175 |
+
[model_tax[18][0], "", model_tax[18][1], 1000, 0, 21.15, 3.08, 15.91],
|
| 176 |
+
[model_tax[4][0], "", model_tax[4][1], 100, 0, 35.20, 13.30, 28.10],
|
| 177 |
+
]
|
| 178 |
+
|
| 179 |
+
MN_DATA = [
|
| 180 |
+
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 36.54, 10.52, 18.67],
|
| 181 |
+
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 39.79, 12.56, 20.06],
|
| 182 |
+
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 41.04, 13.88, 21.52],
|
| 183 |
+
[model_tax[6][0], "", model_tax[6][1], 0, 0, 39.09, 13.91, 19.19],
|
| 184 |
+
[model_tax[6][0], "", model_tax[6][1], 10, 0, 44.02, 15.54, 22.03],
|
| 185 |
+
[model_tax[6][0], "", model_tax[6][1], 100, 0, 46.01, 16.76, 22.91],
|
| 186 |
+
[model_tax[17][0], "", model_tax[17][1], 0, 0, 43.5, 15.7, 22.4],
|
| 187 |
+
[model_tax[17][0], "", model_tax[17][1], 10, 0, 43.4, 16.6, 22.2],
|
| 188 |
+
[model_tax[17][0], "", model_tax[17][1], 100, 0, 45.7, 16.8, 23.2],
|
| 189 |
+
[model_tax[19][0], "", model_tax[19][1], 10, 0, 43.60, 14.85, 20.70],
|
| 190 |
+
[model_tax[19][0], "", model_tax[19][1], 100, 0, 45.55, 16.01, 22.12],
|
| 191 |
+
[model_tax[2][0], "", model_tax[2][1], 10, 0, 38.88, 12.78, 19.88],
|
| 192 |
+
[model_tax[2][0], "", model_tax[2][1], 100, 0, 39.64, 13.64, 20.45],
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
COL_NAMES = [
|
| 196 |
+
"Rank",
|
| 197 |
+
"Model",
|
| 198 |
+
"Additional info",
|
| 199 |
+
"Taxonomy",
|
| 200 |
+
"Training samples",
|
| 201 |
+
"ROUGE",
|
| 202 |
+
"ROUGE-1",
|
| 203 |
+
"ROUGE-2",
|
| 204 |
+
"ROUGE-L",
|
| 205 |
+
]
|
| 206 |
+
|
| 207 |
+
data = {
|
| 208 |
+
"samsum": pd.DataFrame(SAMSUM_DATA),
|
| 209 |
+
"cnn": pd.DataFrame(CNN_DATA),
|
| 210 |
+
"billsum": pd.DataFrame(BILLSUM_DATA),
|
| 211 |
+
"xsum": pd.DataFrame(XSUM_DATA),
|
| 212 |
+
"multinews": pd.DataFrame(MN_DATA),
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
def make_clickable(text, url):
|
| 216 |
+
return "<u>[{}]({})</u>".format(text, url)
|
| 217 |
+
|
| 218 |
+
for dataset in data:
|
| 219 |
+
data[dataset].columns = COL_NAMES[1:]
|
| 220 |
+
data[dataset]["ROUGE"] = np.around(np.mean(data[dataset][["ROUGE-1", "ROUGE-2", "ROUGE-L"]], axis=1), decimals=2)
|
| 221 |
+
data[dataset].sort_values("ROUGE", ascending=False, inplace=True) # to default sort by ROUGE
|
| 222 |
+
# Add Rank column
|
| 223 |
+
data[dataset].insert(0, COL_NAMES[0], range(1, 1 + len(data[dataset])))
|
| 224 |
+
# Add link to papers/repos
|
| 225 |
+
data[dataset]["Model"] = data[dataset]["Model"].apply(lambda x: make_clickable(x, REPOS_PAPERS[x]))
|
| 226 |
+
print(data[dataset]["Model"])
|
| 227 |
+
# data[dataset].drop("ROUGE", axis=1, inplace=True)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
NUM_DATASETS = len(set(DATASETS))
|
| 231 |
+
NUM_MODELS = len(set(MODELS))
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
# 1. Force headers to wrap
|
| 235 |
+
# 2. Force model column (maximum) width
|
| 236 |
+
# 3. Prevent model column from overflowing, scroll instead
|
| 237 |
+
css = """
|
| 238 |
+
table > thead {
|
| 239 |
+
white-space: normal
|
| 240 |
+
}
|
| 241 |
+
table {
|
| 242 |
+
--cell-width-1: 210px
|
| 243 |
+
}
|
| 244 |
+
table > tbody > tr > td:nth-child(2) > div {
|
| 245 |
+
overflow-x: auto
|
| 246 |
+
}
|
| 247 |
+
"""
|
| 248 |
+
|
| 249 |
+
block = gr.Blocks(css=css)
|
| 250 |
+
with block:
|
| 251 |
+
gr.Markdown(f"""
|
| 252 |
+
This is a leaderboard for Few-Shot Summarization (FSS).
|
| 253 |
+
|
| 254 |
+
- **Total Datasets**: {NUM_DATASETS}
|
| 255 |
+
- **Total Models**: {NUM_MODELS}
|
| 256 |
+
- **Metric**: ROUGE Score
|
| 257 |
+
|
| 258 |
+
For more information about the metrics and models employed and to gain a greater understanding of the general taxonomy of FSS, please refer to our [Survey on FSS](the paper will be published soon 🤗).
|
| 259 |
+
""")
|
| 260 |
+
|
| 261 |
+
with gr.Tabs():
|
| 262 |
+
for dataset in data:
|
| 263 |
+
dataset_name = DATASETS[dataset]
|
| 264 |
+
with gr.TabItem(dataset_name):
|
| 265 |
+
with gr.Row():
|
| 266 |
+
gr.Markdown(f"""
|
| 267 |
+
**{dataset_name}** leaderboard
|
| 268 |
+
- **ROUGE** is the average of ROUGE-1, ROUGE-2 and ROUGE-L
|
| 269 |
+
- **RANK** is defined following ROUGE column values
|
| 270 |
+
""")
|
| 271 |
+
with gr.Row():
|
| 272 |
+
data_classification = gr.components.Dataframe(
|
| 273 |
+
data[dataset],
|
| 274 |
+
datatype=["markdown", "markdown", "markdown", "number", "number", "number", "number", "number"],
|
| 275 |
+
type="pandas",
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# gr.Markdown(r"""
|
| 279 |
+
|
| 280 |
+
# Made with ❤️ for NLP. If this work is useful to you, please consider citing:
|
| 281 |
+
|
| 282 |
+
# ```bibtex
|
| 283 |
+
# @article{muennighoff2022mteb,
|
| 284 |
+
# doi = {10.48550/ARXIV.2210.07316},
|
| 285 |
+
# url = {https://arxiv.org/abs/2210.07316},
|
| 286 |
+
# author = {Qui, Quo, Qua},
|
| 287 |
+
# title = {Survey on Low Resource Summarization},
|
| 288 |
+
# publisher = {arXiv},
|
| 289 |
+
# journal={arXiv preprint arXiv:2210.07316},
|
| 290 |
+
# year = {2024}
|
| 291 |
+
# }
|
| 292 |
+
# ```
|
| 293 |
+
# """)
|
| 294 |
+
|
| 295 |
+
block.queue(max_size=10)
|
| 296 |
+
block.launch()
|