Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# app.py — ClimaMind on Hugging Face Spaces (Gradio)
|
| 2 |
-
#
|
| 3 |
-
# PROVIDER=hf_model (default) -> calls HF Inference API
|
| 4 |
-
# PROVIDER=local -> loads model
|
| 5 |
# PROVIDER=stub -> offline canned answers
|
| 6 |
|
| 7 |
import os, time, json, random
|
|
@@ -9,9 +9,10 @@ import requests
|
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
# -------- Config --------
|
| 12 |
-
PROVIDER
|
| 13 |
-
MODEL_ID
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
# -------- HTTP helper --------
|
| 17 |
def _get(url, params=None, headers=None, timeout=12, retries=2, backoff=1.6):
|
|
@@ -45,21 +46,20 @@ def fetch_open_meteo(lat, lon):
|
|
| 45 |
})
|
| 46 |
return r.json()
|
| 47 |
|
| 48 |
-
# -------- PM2.5 (Open-Meteo Air-Quality, free
|
| 49 |
def fetch_pm25(lat, lon):
|
| 50 |
try:
|
| 51 |
r = _get("https://air-quality-api.open-meteo.com/v1/air-quality", params={
|
| 52 |
"latitude": lat, "longitude": lon, "hourly": "pm2_5", "timezone": "auto"
|
| 53 |
}, headers={"User-Agent": "climamind-space"})
|
| 54 |
j = r.json()
|
| 55 |
-
# take the most recent hour
|
| 56 |
hourly = j.get("hourly", {})
|
| 57 |
values = hourly.get("pm2_5") or []
|
| 58 |
if values:
|
| 59 |
return values[-1]
|
| 60 |
except Exception:
|
| 61 |
pass
|
| 62 |
-
return None
|
| 63 |
|
| 64 |
def fetch_factors(lat, lon):
|
| 65 |
wx = fetch_open_meteo(lat, lon)
|
|
@@ -85,7 +85,7 @@ def heat_stress_index(temp_c, rh, wind_kmh):
|
|
| 85 |
hs = (temp_c or 0) * 1.1 + (rh or 0) * 0.3 - (wind_kmh or 0) * 0.2
|
| 86 |
return max(0, min(100, round(hs)))
|
| 87 |
|
| 88 |
-
# -------- Prompt --------
|
| 89 |
PROMPT = """You are ClimaMind, a climate reasoning assistant. Use ONLY the observations provided and return STRICT JSON.
|
| 90 |
|
| 91 |
Location: {loc} (lat={lat}, lon={lon}), local time: {t_local}
|
|
@@ -118,17 +118,26 @@ def call_stub(_prompt:str)->str:
|
|
| 118 |
"risk_badge": "Low"
|
| 119 |
})
|
| 120 |
|
| 121 |
-
|
|
|
|
| 122 |
from huggingface_hub import InferenceClient
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
_local_loaded = False
|
| 134 |
def _ensure_local_loaded():
|
|
@@ -153,8 +162,9 @@ def _ensure_local_loaded():
|
|
| 153 |
)
|
| 154 |
_local_loaded = True
|
| 155 |
|
| 156 |
-
def call_local(prompt:str)->str:
|
| 157 |
_ensure_local_loaded()
|
|
|
|
| 158 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 159 |
messages = [{"role":"user","content":prompt}]
|
| 160 |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt").to(model.device)
|
|
@@ -169,7 +179,7 @@ def call_local(prompt:str)->str:
|
|
| 169 |
repetition_penalty=1.05,
|
| 170 |
eos_token_id=tokenizer.eos_token_id,
|
| 171 |
)
|
| 172 |
-
return tokenizer.decode(out[0], skip_special_tokens=True)
|
| 173 |
|
| 174 |
def reason_answer(loc, coords, factors, query):
|
| 175 |
d_idx = drying_index(factors.get("temp_c"), factors.get("rh"), factors.get("wind_kmh"))
|
|
@@ -183,27 +193,35 @@ def reason_answer(loc, coords, factors, query):
|
|
| 183 |
)
|
| 184 |
|
| 185 |
if PROVIDER == "hf_model":
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
elif PROVIDER == "local":
|
| 188 |
-
raw = call_local(prompt)
|
| 189 |
else:
|
| 190 |
-
raw = call_stub(prompt)
|
| 191 |
|
|
|
|
| 192 |
start, end = raw.find("{"), raw.rfind("}")
|
| 193 |
if start == -1 or end == -1:
|
| 194 |
-
|
| 195 |
"answer": "The reasoning service returned non-JSON text. Please try again.",
|
| 196 |
-
"why_trace": ["Response formatting issue", "
|
| 197 |
-
"risk_badge": "Low"
|
| 198 |
-
}
|
| 199 |
-
try:
|
| 200 |
-
return json.loads(raw[start:end+1])
|
| 201 |
-
except Exception:
|
| 202 |
-
return {
|
| 203 |
-
"answer": "Failed to parse JSON from model output.",
|
| 204 |
-
"why_trace": ["JSON parsing error", "Reduce tokens/temperature", "Retry once"],
|
| 205 |
"risk_badge": "Low"
|
| 206 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
# -------- Gradio UI --------
|
| 209 |
def app(city, question):
|
|
@@ -216,11 +234,13 @@ def app(city, question):
|
|
| 216 |
fx = ", ".join([f"{k}={v}" for k, v in data["factors"].items()])
|
| 217 |
why_list = ans.get("why_trace") or []
|
| 218 |
why = "\n• " + "\n• ".join(why_list) if why_list else "\n• (no trace returned)"
|
|
|
|
| 219 |
md = (
|
| 220 |
f"**Answer:** {ans.get('answer','(no answer)')}\n\n"
|
| 221 |
f"**Why-trace:**{why}\n\n"
|
| 222 |
f"**Risk:** {ans.get('risk_badge','N/A')}\n\n"
|
| 223 |
-
f"**Factors:** {fx}"
|
|
|
|
| 224 |
)
|
| 225 |
return md
|
| 226 |
|
|
@@ -240,8 +260,8 @@ demo = gr.Interface(
|
|
| 240 |
],
|
| 241 |
outputs=gr.Markdown(label="ClimaMind"),
|
| 242 |
title="ClimaMind — K2-Think + Live Climate Data",
|
| 243 |
-
description="
|
| 244 |
-
|
| 245 |
concurrency_limit=2,
|
| 246 |
)
|
| 247 |
|
|
|
|
| 1 |
# app.py — ClimaMind on Hugging Face Spaces (Gradio)
|
| 2 |
+
# Providers:
|
| 3 |
+
# PROVIDER=hf_model (default) -> calls HF Inference API (tries MODEL_ID then ALT_MODEL_ID)
|
| 4 |
+
# PROVIDER=local -> loads model in Space (requires GPU)
|
| 5 |
# PROVIDER=stub -> offline canned answers
|
| 6 |
|
| 7 |
import os, time, json, random
|
|
|
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
# -------- Config --------
|
| 12 |
+
PROVIDER = os.getenv("PROVIDER", "hf_model").strip()
|
| 13 |
+
MODEL_ID = os.getenv("MODEL_ID", "LLM360/K2-Think").strip() # default = public K2
|
| 14 |
+
ALT_MODEL_ID = os.getenv("ALT_MODEL_ID", "Qwen/Qwen2.5-7B-Instruct").strip() # fallback that works on serverless
|
| 15 |
+
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
|
| 16 |
|
| 17 |
# -------- HTTP helper --------
|
| 18 |
def _get(url, params=None, headers=None, timeout=12, retries=2, backoff=1.6):
|
|
|
|
| 46 |
})
|
| 47 |
return r.json()
|
| 48 |
|
| 49 |
+
# -------- PM2.5 (Open-Meteo Air-Quality, free) --------
|
| 50 |
def fetch_pm25(lat, lon):
|
| 51 |
try:
|
| 52 |
r = _get("https://air-quality-api.open-meteo.com/v1/air-quality", params={
|
| 53 |
"latitude": lat, "longitude": lon, "hourly": "pm2_5", "timezone": "auto"
|
| 54 |
}, headers={"User-Agent": "climamind-space"})
|
| 55 |
j = r.json()
|
|
|
|
| 56 |
hourly = j.get("hourly", {})
|
| 57 |
values = hourly.get("pm2_5") or []
|
| 58 |
if values:
|
| 59 |
return values[-1]
|
| 60 |
except Exception:
|
| 61 |
pass
|
| 62 |
+
return None
|
| 63 |
|
| 64 |
def fetch_factors(lat, lon):
|
| 65 |
wx = fetch_open_meteo(lat, lon)
|
|
|
|
| 85 |
hs = (temp_c or 0) * 1.1 + (rh or 0) * 0.3 - (wind_kmh or 0) * 0.2
|
| 86 |
return max(0, min(100, round(hs)))
|
| 87 |
|
| 88 |
+
# -------- Prompt (escape literal braces in JSON) --------
|
| 89 |
PROMPT = """You are ClimaMind, a climate reasoning assistant. Use ONLY the observations provided and return STRICT JSON.
|
| 90 |
|
| 91 |
Location: {loc} (lat={lat}, lon={lon}), local time: {t_local}
|
|
|
|
| 118 |
"risk_badge": "Low"
|
| 119 |
})
|
| 120 |
|
| 121 |
+
# Try HF Inference (MODEL_ID -> ALT_MODEL_ID), return (text, model_used)
|
| 122 |
+
def call_hf_model(prompt:str) -> tuple[str, str]:
|
| 123 |
from huggingface_hub import InferenceClient
|
| 124 |
+
attempts = [m for m in [MODEL_ID, ALT_MODEL_ID] if m]
|
| 125 |
+
for mid in attempts:
|
| 126 |
+
try:
|
| 127 |
+
client = InferenceClient(model=mid, token=(HF_TOKEN or None))
|
| 128 |
+
out = client.text_generation(
|
| 129 |
+
prompt,
|
| 130 |
+
max_new_tokens=200,
|
| 131 |
+
temperature=0.1,
|
| 132 |
+
repetition_penalty=1.05,
|
| 133 |
+
do_sample=False,
|
| 134 |
+
)
|
| 135 |
+
return str(out), mid
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(f"[HF_MODEL] Failed on {mid}: {repr(e)}")
|
| 138 |
+
continue
|
| 139 |
+
# If all failed, raise so we can stub
|
| 140 |
+
raise RuntimeError(f"No serverless provider available. Tried: {attempts}")
|
| 141 |
|
| 142 |
_local_loaded = False
|
| 143 |
def _ensure_local_loaded():
|
|
|
|
| 162 |
)
|
| 163 |
_local_loaded = True
|
| 164 |
|
| 165 |
+
def call_local(prompt:str)->tuple[str, str]:
|
| 166 |
_ensure_local_loaded()
|
| 167 |
+
import torch # import here to avoid dependency if not used
|
| 168 |
if hasattr(tokenizer, "apply_chat_template"):
|
| 169 |
messages = [{"role":"user","content":prompt}]
|
| 170 |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt").to(model.device)
|
|
|
|
| 179 |
repetition_penalty=1.05,
|
| 180 |
eos_token_id=tokenizer.eos_token_id,
|
| 181 |
)
|
| 182 |
+
return tokenizer.decode(out[0], skip_special_tokens=True), MODEL_ID
|
| 183 |
|
| 184 |
def reason_answer(loc, coords, factors, query):
|
| 185 |
d_idx = drying_index(factors.get("temp_c"), factors.get("rh"), factors.get("wind_kmh"))
|
|
|
|
| 193 |
)
|
| 194 |
|
| 195 |
if PROVIDER == "hf_model":
|
| 196 |
+
try:
|
| 197 |
+
raw, model_used = call_hf_model(prompt)
|
| 198 |
+
except Exception as e:
|
| 199 |
+
print("[HF_MODEL] Falling back to stub:", repr(e))
|
| 200 |
+
raw, model_used = call_stub(prompt), "stub"
|
| 201 |
elif PROVIDER == "local":
|
| 202 |
+
raw, model_used = call_local(prompt)
|
| 203 |
else:
|
| 204 |
+
raw, model_used = call_stub(prompt), "stub"
|
| 205 |
|
| 206 |
+
# Extract JSON
|
| 207 |
start, end = raw.find("{"), raw.rfind("}")
|
| 208 |
if start == -1 or end == -1:
|
| 209 |
+
parsed = {
|
| 210 |
"answer": "The reasoning service returned non-JSON text. Please try again.",
|
| 211 |
+
"why_trace": ["Response formatting issue", "Keep temperature low", "Retry once"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
"risk_badge": "Low"
|
| 213 |
}
|
| 214 |
+
else:
|
| 215 |
+
try:
|
| 216 |
+
parsed = json.loads(raw[start:end+1])
|
| 217 |
+
except Exception:
|
| 218 |
+
parsed = {
|
| 219 |
+
"answer": "Failed to parse JSON from model output.",
|
| 220 |
+
"why_trace": ["JSON parsing error", "Reduce tokens/temperature", "Retry once"],
|
| 221 |
+
"risk_badge": "Low"
|
| 222 |
+
}
|
| 223 |
+
parsed["_model_used"] = model_used
|
| 224 |
+
return parsed
|
| 225 |
|
| 226 |
# -------- Gradio UI --------
|
| 227 |
def app(city, question):
|
|
|
|
| 234 |
fx = ", ".join([f"{k}={v}" for k, v in data["factors"].items()])
|
| 235 |
why_list = ans.get("why_trace") or []
|
| 236 |
why = "\n• " + "\n• ".join(why_list) if why_list else "\n• (no trace returned)"
|
| 237 |
+
model_used = ans.pop("_model_used", "unknown")
|
| 238 |
md = (
|
| 239 |
f"**Answer:** {ans.get('answer','(no answer)')}\n\n"
|
| 240 |
f"**Why-trace:**{why}\n\n"
|
| 241 |
f"**Risk:** {ans.get('risk_badge','N/A')}\n\n"
|
| 242 |
+
f"**Factors:** {fx}\n\n"
|
| 243 |
+
f"<sub>Provider: {PROVIDER} • Model: `{model_used}`</sub>"
|
| 244 |
)
|
| 245 |
return md
|
| 246 |
|
|
|
|
| 260 |
],
|
| 261 |
outputs=gr.Markdown(label="ClimaMind"),
|
| 262 |
title="ClimaMind — K2-Think + Live Climate Data",
|
| 263 |
+
description="Serverless tries K2, falls back to Qwen if needed; or run locally on GPU Space. Stub as last resort.",
|
| 264 |
+
flagging_mode="never",
|
| 265 |
concurrency_limit=2,
|
| 266 |
)
|
| 267 |
|