AnujithM commited on
Commit
55a6c23
·
verified ·
1 Parent(s): de383cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -29
app.py CHANGED
@@ -3,12 +3,6 @@
3
  # PROVIDER=hf_model (default) -> calls HF Inference API for K2 (recommended for demo)
4
  # PROVIDER=local -> loads model with transformers (requires GPU Space)
5
  # PROVIDER=stub -> offline canned answers
6
- #
7
- # Space Secrets / Variables to set:
8
- # HF_TOKEN -> your Hugging Face token (Read + Inference permissions)
9
- # MODEL_ID -> default: MBZUAI-IFM/K2-Think-SFT (fallback: LLM360/K2-Think)
10
- # PROVIDER -> "hf_model" | "local" | "stub"
11
- # HF_HUB_DISABLE_TELEMETRY=1 (optional)
12
 
13
  import os, time, json, random
14
  import requests
@@ -19,7 +13,7 @@ PROVIDER = os.getenv("PROVIDER", "hf_model").strip()
19
  MODEL_ID = os.getenv("MODEL_ID", "MBZUAI-IFM/K2-Think-SFT").strip()
20
  HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
21
 
22
- # -------- Data fetch (Open-Meteo + OpenAQ) --------
23
  def _get(url, params=None, headers=None, timeout=12, retries=2, backoff=1.6):
24
  for i in range(retries + 1):
25
  try:
@@ -31,6 +25,7 @@ def _get(url, params=None, headers=None, timeout=12, retries=2, backoff=1.6):
31
  raise
32
  time.sleep((backoff ** i) + random.random() * 0.25)
33
 
 
34
  def geocode_city(city:str):
35
  r = _get("https://nominatim.openstreetmap.org/search",
36
  params={"q": city, "format": "json", "limit": 1},
@@ -40,6 +35,7 @@ def geocode_city(city:str):
40
  raise RuntimeError("City not found")
41
  return {"lat": float(j[0]["lat"]), "lon": float(j[0]["lon"]), "name": j[0]["display_name"]}
42
 
 
43
  def fetch_open_meteo(lat, lon):
44
  r = _get("https://api.open-meteo.com/v1/forecast", params={
45
  "latitude": lat, "longitude": lon,
@@ -49,30 +45,32 @@ def fetch_open_meteo(lat, lon):
49
  })
50
  return r.json()
51
 
52
- def fetch_openaq_pm25(lat, lon):
53
- r = _get("https://api.openaq.org/v3/latest",
54
- params={"coordinates": f"{lat},{lon}", "radius": 10000, "limit": 1, "parameter": "pm25"},
55
- headers={"User-Agent": "climamind-space"})
56
- j = r.json()
57
- pm25 = None
58
- if j.get("results"):
59
- ms = j["results"][0].get("measurements", [])
60
- for m in ms:
61
- if m.get("parameter") == "pm25":
62
- pm25 = m.get("value")
63
- break
64
- return pm25
 
 
65
 
66
  def fetch_factors(lat, lon):
67
  wx = fetch_open_meteo(lat, lon)
68
- cur = wx.get("current", {})
69
  factors = {
70
  "temp_c": cur.get("temperature_2m"),
71
  "rh": cur.get("relative_humidity_2m"),
72
  "wind_kmh": cur.get("wind_speed_10m"),
73
  "precip_mm": cur.get("precipitation"),
74
  "uv": cur.get("uv_index"),
75
- "pm25": fetch_openaq_pm25(lat, lon)
76
  }
77
  return {"factors": factors, "raw": wx}
78
 
@@ -120,7 +118,6 @@ def call_stub(_prompt:str)->str:
120
  })
121
 
122
  def call_hf_model(prompt:str)->str:
123
- # Hugging Face Inference API (serverless).
124
  from huggingface_hub import InferenceClient
125
  client = InferenceClient(model=MODEL_ID, token=(HF_TOKEN or None))
126
  out = client.text_generation(
@@ -139,10 +136,9 @@ def _ensure_local_loaded():
139
  if _local_loaded:
140
  return
141
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
142
- import torch
143
  bnb_cfg = BitsAndBytesConfig(
144
  load_in_4bit=True,
145
- bnb_4bit_compute_dtype=torch.bfloat16,
146
  bnb_4bit_use_double_quant=True,
147
  bnb_4bit_quant_type="nf4",
148
  )
@@ -158,7 +154,6 @@ def _ensure_local_loaded():
158
 
159
  def call_local(prompt:str)->str:
160
  _ensure_local_loaded()
161
- import torch
162
  if hasattr(tokenizer, "apply_chat_template"):
163
  messages = [{"role":"user","content":prompt}]
164
  inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt").to(model.device)
@@ -193,7 +188,6 @@ def reason_answer(loc, coords, factors, query):
193
  else:
194
  raw = call_stub(prompt)
195
 
196
- # Extract largest JSON block
197
  start, end = raw.find("{"), raw.rfind("}")
198
  if start == -1 or end == -1:
199
  return {
@@ -247,10 +241,9 @@ demo = gr.Interface(
247
  title="ClimaMind — K2-Think + Live Climate Data",
248
  description="Provider = hf_model (Inference API) | local (GPU Space) | stub (offline). Configure env in Space settings.",
249
  allow_flagging="never",
250
- concurrency_limit=2, # <— replaces deprecated queue(concurrency_count=...)
251
  )
252
 
253
- # Optional queue for request buffering (no deprecated args)
254
  demo.queue(max_size=8)
255
 
256
  if __name__ == "__main__":
 
3
  # PROVIDER=hf_model (default) -> calls HF Inference API for K2 (recommended for demo)
4
  # PROVIDER=local -> loads model with transformers (requires GPU Space)
5
  # PROVIDER=stub -> offline canned answers
 
 
 
 
 
 
6
 
7
  import os, time, json, random
8
  import requests
 
13
  MODEL_ID = os.getenv("MODEL_ID", "MBZUAI-IFM/K2-Think-SFT").strip()
14
  HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
15
 
16
+ # -------- HTTP helper --------
17
  def _get(url, params=None, headers=None, timeout=12, retries=2, backoff=1.6):
18
  for i in range(retries + 1):
19
  try:
 
25
  raise
26
  time.sleep((backoff ** i) + random.random() * 0.25)
27
 
28
+ # -------- Geocode (free) --------
29
  def geocode_city(city:str):
30
  r = _get("https://nominatim.openstreetmap.org/search",
31
  params={"q": city, "format": "json", "limit": 1},
 
35
  raise RuntimeError("City not found")
36
  return {"lat": float(j[0]["lat"]), "lon": float(j[0]["lon"]), "name": j[0]["display_name"]}
37
 
38
+ # -------- Weather (Open-Meteo, free) --------
39
  def fetch_open_meteo(lat, lon):
40
  r = _get("https://api.open-meteo.com/v1/forecast", params={
41
  "latitude": lat, "longitude": lon,
 
45
  })
46
  return r.json()
47
 
48
+ # -------- PM2.5 (Open-Meteo Air-Quality, free; replaces OpenAQ v3 which now needs a key) --------
49
+ def fetch_pm25(lat, lon):
50
+ try:
51
+ r = _get("https://air-quality-api.open-meteo.com/v1/air-quality", params={
52
+ "latitude": lat, "longitude": lon, "hourly": "pm2_5", "timezone": "auto"
53
+ }, headers={"User-Agent": "climamind-space"})
54
+ j = r.json()
55
+ # take the most recent hour
56
+ hourly = j.get("hourly", {})
57
+ values = hourly.get("pm2_5") or []
58
+ if values:
59
+ return values[-1]
60
+ except Exception:
61
+ pass
62
+ return None # graceful fallback
63
 
64
  def fetch_factors(lat, lon):
65
  wx = fetch_open_meteo(lat, lon)
66
+ cur = wx.get("current", {}) or {}
67
  factors = {
68
  "temp_c": cur.get("temperature_2m"),
69
  "rh": cur.get("relative_humidity_2m"),
70
  "wind_kmh": cur.get("wind_speed_10m"),
71
  "precip_mm": cur.get("precipitation"),
72
  "uv": cur.get("uv_index"),
73
+ "pm25": fetch_pm25(lat, lon),
74
  }
75
  return {"factors": factors, "raw": wx}
76
 
 
118
  })
119
 
120
  def call_hf_model(prompt:str)->str:
 
121
  from huggingface_hub import InferenceClient
122
  client = InferenceClient(model=MODEL_ID, token=(HF_TOKEN or None))
123
  out = client.text_generation(
 
136
  if _local_loaded:
137
  return
138
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
 
139
  bnb_cfg = BitsAndBytesConfig(
140
  load_in_4bit=True,
141
+ bnb_4bit_compute_dtype="bfloat16",
142
  bnb_4bit_use_double_quant=True,
143
  bnb_4bit_quant_type="nf4",
144
  )
 
154
 
155
  def call_local(prompt:str)->str:
156
  _ensure_local_loaded()
 
157
  if hasattr(tokenizer, "apply_chat_template"):
158
  messages = [{"role":"user","content":prompt}]
159
  inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt").to(model.device)
 
188
  else:
189
  raw = call_stub(prompt)
190
 
 
191
  start, end = raw.find("{"), raw.rfind("}")
192
  if start == -1 or end == -1:
193
  return {
 
241
  title="ClimaMind — K2-Think + Live Climate Data",
242
  description="Provider = hf_model (Inference API) | local (GPU Space) | stub (offline). Configure env in Space settings.",
243
  allow_flagging="never",
244
+ concurrency_limit=2,
245
  )
246
 
 
247
  demo.queue(max_size=8)
248
 
249
  if __name__ == "__main__":