Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import networkx as nx
|
| 5 |
+
|
| 6 |
+
from lib.graph_extract import triplextract, parse_triples
|
| 7 |
+
from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot
|
| 8 |
+
from lib.samples import snippets
|
| 9 |
+
|
| 10 |
+
WORD_LIMIT = 300
|
| 11 |
+
|
| 12 |
+
def process_text(text, entity_types, predicates, layout_type, visualization_type):
|
| 13 |
+
if not text:
|
| 14 |
+
return None, None, "Please enter some text."
|
| 15 |
+
|
| 16 |
+
words = text.split()
|
| 17 |
+
if len(words) > WORD_LIMIT:
|
| 18 |
+
return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"
|
| 19 |
+
|
| 20 |
+
entity_types = [et.strip() for et in entity_types.split(",") if et.strip()]
|
| 21 |
+
predicates = [p.strip() for p in predicates.split(",") if p.strip()]
|
| 22 |
+
|
| 23 |
+
if not entity_types:
|
| 24 |
+
return None, None, "Please enter at least one entity type."
|
| 25 |
+
if not predicates:
|
| 26 |
+
return None, None, "Please enter at least one predicate."
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
prediction = triplextract(text, entity_types, predicates)
|
| 30 |
+
if prediction.startswith("Error"):
|
| 31 |
+
return None, None, prediction
|
| 32 |
+
|
| 33 |
+
entities, relationships = parse_triples(prediction)
|
| 34 |
+
|
| 35 |
+
if not entities and not relationships:
|
| 36 |
+
return None, None, "No entities or relationships found. Try different text or check your input."
|
| 37 |
+
|
| 38 |
+
G = create_graph(entities, relationships)
|
| 39 |
+
|
| 40 |
+
if visualization_type == 'Bokeh':
|
| 41 |
+
fig = create_bokeh_plot(G, layout_type)
|
| 42 |
+
else:
|
| 43 |
+
fig = create_plotly_plot(G, layout_type)
|
| 44 |
+
|
| 45 |
+
output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}"
|
| 46 |
+
return G, fig, output_text
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Error in process_text: {str(e)}")
|
| 49 |
+
return None, None, f"An error occurred: {str(e)}"
|
| 50 |
+
|
| 51 |
+
def update_graph(G, layout_type, visualization_type):
|
| 52 |
+
if G is None:
|
| 53 |
+
return None, "Please process text first."
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
if visualization_type == 'Bokeh':
|
| 57 |
+
fig = create_bokeh_plot(G, layout_type)
|
| 58 |
+
else:
|
| 59 |
+
fig = create_plotly_plot(G, layout_type)
|
| 60 |
+
return fig, ""
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Error in update_graph: {e}")
|
| 63 |
+
return None, f"An error occurred while updating the graph: {str(e)}"
|
| 64 |
+
|
| 65 |
+
def update_inputs(sample_name):
|
| 66 |
+
sample = snippets[sample_name]
|
| 67 |
+
return sample.text_input, sample.entity_types, sample.predicates
|
| 68 |
+
|
| 69 |
+
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
| 70 |
+
gr.Markdown("# Knowledge Graph Extractor")
|
| 71 |
+
|
| 72 |
+
default_sample_name = random.choice(list(snippets.keys()))
|
| 73 |
+
default_sample = snippets[default_sample_name]
|
| 74 |
+
|
| 75 |
+
with gr.Row():
|
| 76 |
+
with gr.Column(scale=1):
|
| 77 |
+
sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name)
|
| 78 |
+
input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input)
|
| 79 |
+
entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types)
|
| 80 |
+
predicates = gr.Textbox(label="Predicates", value=default_sample.predicates)
|
| 81 |
+
layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'],
|
| 82 |
+
label="Layout Type", value='spring')
|
| 83 |
+
visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh')
|
| 84 |
+
process_btn = gr.Button("Process Text")
|
| 85 |
+
with gr.Column(scale=2):
|
| 86 |
+
output_graph = gr.Plot(label="Knowledge Graph")
|
| 87 |
+
error_message = gr.Textbox(label="Textual Output")
|
| 88 |
+
|
| 89 |
+
graph_state = gr.State(None)
|
| 90 |
+
|
| 91 |
+
def process_and_update(text, entity_types, predicates, layout_type, visualization_type):
|
| 92 |
+
G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type)
|
| 93 |
+
return G, fig, output
|
| 94 |
+
|
| 95 |
+
def update_graph_wrapper(G, layout_type, visualization_type):
|
| 96 |
+
if G is not None:
|
| 97 |
+
fig, _ = update_graph(G, layout_type, visualization_type)
|
| 98 |
+
return fig
|
| 99 |
+
|
| 100 |
+
sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates])
|
| 101 |
+
|
| 102 |
+
process_btn.click(process_and_update,
|
| 103 |
+
inputs=[input_text, entity_types, predicates, layout_type, visualization_type],
|
| 104 |
+
outputs=[graph_state, output_graph, error_message])
|
| 105 |
+
|
| 106 |
+
layout_type.change(update_graph_wrapper,
|
| 107 |
+
inputs=[graph_state, layout_type, visualization_type],
|
| 108 |
+
outputs=[output_graph])
|
| 109 |
+
|
| 110 |
+
visualization_type.change(update_graph_wrapper,
|
| 111 |
+
inputs=[graph_state, layout_type, visualization_type],
|
| 112 |
+
outputs=[output_graph])
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
demo.launch(share=True)import random
|
| 116 |
+
|
| 117 |
+
import gradio as gr
|
| 118 |
+
import networkx as nx
|
| 119 |
+
|
| 120 |
+
from lib.graph_extract import triplextract, parse_triples
|
| 121 |
+
from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot
|
| 122 |
+
from lib.samples import snippets
|
| 123 |
+
|
| 124 |
+
WORD_LIMIT = 300
|
| 125 |
+
|
| 126 |
+
def process_text(text, entity_types, predicates, layout_type, visualization_type):
|
| 127 |
+
if not text:
|
| 128 |
+
return None, None, "Please enter some text."
|
| 129 |
+
|
| 130 |
+
words = text.split()
|
| 131 |
+
if len(words) > WORD_LIMIT:
|
| 132 |
+
return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"
|
| 133 |
+
|
| 134 |
+
entity_types = [et.strip() for et in entity_types.split(",") if et.strip()]
|
| 135 |
+
predicates = [p.strip() for p in predicates.split(",") if p.strip()]
|
| 136 |
+
|
| 137 |
+
if not entity_types:
|
| 138 |
+
return None, None, "Please enter at least one entity type."
|
| 139 |
+
if not predicates:
|
| 140 |
+
return None, None, "Please enter at least one predicate."
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
prediction = triplextract(text, entity_types, predicates)
|
| 144 |
+
if prediction.startswith("Error"):
|
| 145 |
+
return None, None, prediction
|
| 146 |
+
|
| 147 |
+
entities, relationships = parse_triples(prediction)
|
| 148 |
+
|
| 149 |
+
if not entities and not relationships:
|
| 150 |
+
return None, None, "No entities or relationships found. Try different text or check your input."
|
| 151 |
+
|
| 152 |
+
G = create_graph(entities, relationships)
|
| 153 |
+
|
| 154 |
+
if visualization_type == 'Bokeh':
|
| 155 |
+
fig = create_bokeh_plot(G, layout_type)
|
| 156 |
+
else:
|
| 157 |
+
fig = create_plotly_plot(G, layout_type)
|
| 158 |
+
|
| 159 |
+
output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}"
|
| 160 |
+
return G, fig, output_text
|
| 161 |
+
except Exception as e:
|
| 162 |
+
print(f"Error in process_text: {str(e)}")
|
| 163 |
+
return None, None, f"An error occurred: {str(e)}"
|
| 164 |
+
|
| 165 |
+
def update_graph(G, layout_type, visualization_type):
|
| 166 |
+
if G is None:
|
| 167 |
+
return None, "Please process text first."
|
| 168 |
+
|
| 169 |
+
try:
|
| 170 |
+
if visualization_type == 'Bokeh':
|
| 171 |
+
fig = create_bokeh_plot(G, layout_type)
|
| 172 |
+
else:
|
| 173 |
+
fig = create_plotly_plot(G, layout_type)
|
| 174 |
+
return fig, ""
|
| 175 |
+
except Exception as e:
|
| 176 |
+
print(f"Error in update_graph: {e}")
|
| 177 |
+
return None, f"An error occurred while updating the graph: {str(e)}"
|
| 178 |
+
|
| 179 |
+
def update_inputs(sample_name):
|
| 180 |
+
sample = snippets[sample_name]
|
| 181 |
+
return sample.text_input, sample.entity_types, sample.predicates
|
| 182 |
+
|
| 183 |
+
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
| 184 |
+
gr.Markdown("# Knowledge Graph Extractor")
|
| 185 |
+
|
| 186 |
+
default_sample_name = random.choice(list(snippets.keys()))
|
| 187 |
+
default_sample = snippets[default_sample_name]
|
| 188 |
+
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column(scale=1):
|
| 191 |
+
sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name)
|
| 192 |
+
input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input)
|
| 193 |
+
entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types)
|
| 194 |
+
predicates = gr.Textbox(label="Predicates", value=default_sample.predicates)
|
| 195 |
+
layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'],
|
| 196 |
+
label="Layout Type", value='spring')
|
| 197 |
+
visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh')
|
| 198 |
+
process_btn = gr.Button("Process Text")
|
| 199 |
+
with gr.Column(scale=2):
|
| 200 |
+
output_graph = gr.Plot(label="Knowledge Graph")
|
| 201 |
+
error_message = gr.Textbox(label="Textual Output")
|
| 202 |
+
|
| 203 |
+
graph_state = gr.State(None)
|
| 204 |
+
|
| 205 |
+
def process_and_update(text, entity_types, predicates, layout_type, visualization_type):
|
| 206 |
+
G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type)
|
| 207 |
+
return G, fig, output
|
| 208 |
+
|
| 209 |
+
def update_graph_wrapper(G, layout_type, visualization_type):
|
| 210 |
+
if G is not None:
|
| 211 |
+
fig, _ = update_graph(G, layout_type, visualization_type)
|
| 212 |
+
return fig
|
| 213 |
+
|
| 214 |
+
sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates])
|
| 215 |
+
|
| 216 |
+
process_btn.click(process_and_update,
|
| 217 |
+
inputs=[input_text, entity_types, predicates, layout_type, visualization_type],
|
| 218 |
+
outputs=[graph_state, output_graph, error_message])
|
| 219 |
+
|
| 220 |
+
layout_type.change(update_graph_wrapper,
|
| 221 |
+
inputs=[graph_state, layout_type, visualization_type],
|
| 222 |
+
outputs=[output_graph])
|
| 223 |
+
|
| 224 |
+
visualization_type.change(update_graph_wrapper,
|
| 225 |
+
inputs=[graph_state, layout_type, visualization_type],
|
| 226 |
+
outputs=[output_graph])
|
| 227 |
+
|
| 228 |
+
if __name__ == "__main__":
|
| 229 |
+
demo.launch(share=True)
|