Spaces:
Sleeping
Sleeping
Muskanrath2234
commited on
Commit
·
5848fd3
1
Parent(s):
ac59358
add application files
Browse files- app.py +112 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from spacy.lang.en import English
|
| 2 |
+
|
| 3 |
+
nlp = English()
|
| 4 |
+
nlp.add_pipe("sentencizer")
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
from gradio.themes.utils.colors import red, green
|
| 11 |
+
|
| 12 |
+
detector = pipeline(task='text-classification', model='SJTU-CL/RoBERTa-large-ArguGPT-sent')
|
| 13 |
+
|
| 14 |
+
color_map = {
|
| 15 |
+
'0%': green.c400,
|
| 16 |
+
'10%': green.c300,
|
| 17 |
+
'20%': green.c200,
|
| 18 |
+
'30%': green.c100,
|
| 19 |
+
'40%': green.c50,
|
| 20 |
+
'50%': red.c50,
|
| 21 |
+
'60%': red.c100,
|
| 22 |
+
'70%': red.c200,
|
| 23 |
+
'80%': red.c300,
|
| 24 |
+
'90%': red.c400,
|
| 25 |
+
'100%': red.c500
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def predict_doc(doc):
|
| 30 |
+
# sents = sent_tokenize(doc)
|
| 31 |
+
sents = [s.text for s in nlp(doc).sents]
|
| 32 |
+
data = {'sentence': [], 'label': [], 'score': []}
|
| 33 |
+
res = []
|
| 34 |
+
for sent in sents:
|
| 35 |
+
prob = predict_one_sent(sent)
|
| 36 |
+
|
| 37 |
+
data['sentence'].append(sent)
|
| 38 |
+
data['score'].append(round(prob, 4))
|
| 39 |
+
if prob <= 0.5:
|
| 40 |
+
data['label'].append('Human')
|
| 41 |
+
else:
|
| 42 |
+
data['label'].append('Machine')
|
| 43 |
+
|
| 44 |
+
if prob < 0.1:
|
| 45 |
+
label = '0%'
|
| 46 |
+
elif prob < 0.2:
|
| 47 |
+
label = '10%'
|
| 48 |
+
elif prob < 0.3:
|
| 49 |
+
label = '20%'
|
| 50 |
+
elif prob < 0.4:
|
| 51 |
+
label = '30%'
|
| 52 |
+
elif prob < 0.5:
|
| 53 |
+
label = '40%'
|
| 54 |
+
elif prob < 0.6:
|
| 55 |
+
label = '50%'
|
| 56 |
+
elif prob < 0.7:
|
| 57 |
+
label = '60%'
|
| 58 |
+
elif prob < 0.8:
|
| 59 |
+
label = '70%'
|
| 60 |
+
elif prob < 0.9:
|
| 61 |
+
label = '80%'
|
| 62 |
+
elif prob < 1:
|
| 63 |
+
label = '90%'
|
| 64 |
+
else:
|
| 65 |
+
label = '100%'
|
| 66 |
+
res.append((sent, label))
|
| 67 |
+
|
| 68 |
+
df = pd.DataFrame(data)
|
| 69 |
+
df.to_csv('result.csv')
|
| 70 |
+
overall_score = df.score.mean()
|
| 71 |
+
sum_str = ''
|
| 72 |
+
if overall_score <= 0.5:
|
| 73 |
+
overall_label = 'Human'
|
| 74 |
+
else:
|
| 75 |
+
overall_label = 'Machine'
|
| 76 |
+
sum_str = f'The essay is probably written by {overall_label}. The probability of being generated by AI is {overall_score}'
|
| 77 |
+
|
| 78 |
+
return sum_str, res, df, 'result.csv'
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def predict_one_sent(sent):
|
| 82 |
+
'''
|
| 83 |
+
convert to prob
|
| 84 |
+
LABEL_1, 0.66 -> 0.66
|
| 85 |
+
LABEL_0, 0.66 -> 0.34
|
| 86 |
+
'''
|
| 87 |
+
res = detector(sent)[0]
|
| 88 |
+
org_label, prob = res['label'], res['score']
|
| 89 |
+
if org_label == 'LABEL_0': prob = 1 - prob
|
| 90 |
+
return prob
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
with gr.Blocks() as demo:
|
| 94 |
+
with gr.Row():
|
| 95 |
+
with gr.Column():
|
| 96 |
+
text_in = gr.Textbox(
|
| 97 |
+
lines=5,
|
| 98 |
+
label='Essay input',
|
| 99 |
+
info='Please enter the essay in the textbox'
|
| 100 |
+
)
|
| 101 |
+
btn = gr.Button('Predict who writes this essay!')
|
| 102 |
+
|
| 103 |
+
sent_res = gr.HighlightedText(label='Labeled Result', color_map=color_map)
|
| 104 |
+
|
| 105 |
+
with gr.Row():
|
| 106 |
+
summary = gr.Text(label='Result summary')
|
| 107 |
+
csv_f = gr.File(label='CSV file storing data with all sentences.')
|
| 108 |
+
|
| 109 |
+
tab = gr.Dataframe(label='Table with Probability Score', row_count=100)
|
| 110 |
+
btn.click(predict_doc, inputs=[text_in], outputs=[summary, sent_res, tab, csv_f], api_name='predict_doc')
|
| 111 |
+
|
| 112 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0,<3.0.0
|
| 2 |
+
transformers>=4.30.0,<5.0.0
|
| 3 |
+
spacy==3.8
|
| 4 |
+
pandas>=2.0.0,<3.0.0
|
| 5 |
+
gradio>=3.50.2,<4.0.0
|
| 6 |
+
gradio_client>=0.6.0,<1.0.0
|
| 7 |
+
protobuf>=3.20.0,<4.0.0
|