Spaces:
Runtime error
Runtime error
File size: 8,526 Bytes
f7a4394 47b0e83 f7a4394 47b0e83 f7a4394 47b0e83 f7a4394 47b0e83 f7a4394 47b0e83 f7a4394 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import onnx
import numpy as np
from collections import defaultdict
import os
import json
from datetime import datetime
import onnx.numpy_helper
from huggingface_hub import HfApi
from tempfile import NamedTemporaryFile
import time
from huggingface_hub import HfApi, login
def analyze_weight_data(tensor):
"""Analyze tensor data"""
try:
np_array = onnx.numpy_helper.to_array(tensor)
info = {
'name': tensor.name,
'shape': list(np_array.shape),
'data_type': onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[tensor.data_type].__name__,
'size': np_array.size,
'bytes': np_array.nbytes,
'statistics': {
'min': float(np_array.min()),
'max': float(np_array.max()),
'mean': float(np_array.mean()),
'std': float(np_array.std()),
'non_zero': int(np.count_nonzero(np_array)),
'zero_count': int(np_array.size - np.count_nonzero(np_array)),
'unique_values': int(len(np.unique(np_array))),
},
'distribution': {
'percentiles': {
'1%': float(np.percentile(np_array, 1)),
'25%': float(np.percentile(np_array, 25)),
'50%': float(np.percentile(np_array, 50)),
'75%': float(np.percentile(np_array, 75)),
'99%': float(np.percentile(np_array, 99)),
},
'sparsity': float(np.count_nonzero(np_array == 0) / np_array.size),
},
}
if np_array.size <= 100:
info['sample_values'] = np_array.tolist()
else:
info['sample_values'] = {
'first_10': np_array.flatten()[:10].tolist(),
'last_10': np_array.flatten()[-10:].tolist()
}
return info
except Exception as e:
return {
'name': tensor.name,
'error': f"Analysis failed: {str(e)}"
}
def analyze_model_structure(graph):
"""Analyze model structure"""
structure = {
'nodes': [],
'connections': defaultdict(list),
'input_nodes': [],
'output_nodes': [],
}
for node in graph.node:
node_info = {
'name': node.name or f"node_{len(structure['nodes'])}",
'op_type': node.op_type,
'inputs': list(node.input),
'outputs': list(node.output),
'attributes': {}
}
structure['nodes'].append(node_info)
for input_name in node.input:
structure['connections'][input_name].append(node_info['name'])
structure['input_nodes'] = [input.name for input in graph.input]
structure['output_nodes'] = [output.name for output in graph.output]
return structure
def analyze_onnx_model(model_path):
"""Analyze ONNX model"""
model = onnx.load(model_path)
graph = model.graph
analysis = {
'model_info': {
'ir_version': str(model.ir_version),
'producer_name': model.producer_name,
'producer_version': model.producer_version,
'domain': model.domain,
'model_version': str(model.model_version),
'doc_string': model.doc_string,
},
'structure': analyze_model_structure(graph),
'weights_analysis': {},
'computation_info': {
'total_params': 0,
'total_memory': 0,
'layer_stats': defaultdict(int)
}
}
for tensor in graph.initializer:
weight_info = analyze_weight_data(tensor)
analysis['weights_analysis'][tensor.name] = weight_info
if 'shape' in weight_info:
analysis['computation_info']['total_params'] += np.prod(weight_info['shape'])
analysis['computation_info']['total_memory'] += weight_info.get('bytes', 0)
for node in graph.node:
analysis['computation_info']['layer_stats'][node.op_type] += 1
return analysis
def format_analysis_text(analysis):
"""Format analysis results as text"""
text = "=== MODEL INFORMATION ===\n"
for key, value in analysis['model_info'].items():
if value:
text += f"{key}: {value}\n"
text += "\n=== NETWORK STRUCTURE ===\n"
text += f"Total layers: {len(analysis['structure']['nodes'])}\n"
text += f"Input nodes: {', '.join(analysis['structure']['input_nodes'])}\n"
text += f"Output nodes: {', '.join(analysis['structure']['output_nodes'])}\n"
text += "\n=== LAYER STATISTICS ===\n"
for op_type, count in analysis['computation_info']['layer_stats'].items():
text += f"{op_type}: {count} layers\n"
text += "\n=== WEIGHTS ANALYSIS ===\n"
total_params = analysis['computation_info']['total_params']
total_memory = analysis['computation_info']['total_memory']
text += f"Total parameters: {total_params:,}\n"
text += f"Total memory usage: {total_memory/1024/1024:.2f} MB\n"
return text
def save_to_hf_dataset(analysis, model_name):
"""
Save analysis results to Hugging Face dataset using token from environment variable
Args:
analysis: Analysis results to save
model_name: Name of the model being analyzed
"""
# Get token from environment variable
hf_token = os.getenv('HF_TOKEN')
if not hf_token:
raise ValueError("HF_TOKEN environment variable not found")
# Login with token
login(token=hf_token)
# Initialize API
api = HfApi()
# Create temporary files
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
with NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as txt_file:
txt_file.write(format_analysis_text(analysis))
txt_path = txt_file.name
with NamedTemporaryFile(mode='w', suffix='.json', delete=False) as json_file:
json.dump(analysis, json_file, indent=2)
json_path = json_file.name
try:
# Upload files to dataset
api.upload_file(
path_or_fileobj=txt_path,
path_in_repo=f"analysis_{model_name}_{timestamp}.txt",
repo_id="Arrcttacsrks/OnnxAnalysisData",
repo_type="dataset"
)
api.upload_file(
path_or_fileobj=json_path,
path_in_repo=f"analysis_{model_name}_{timestamp}.json",
repo_id="Arrcttacsrks/OnnxAnalysisData",
repo_type="dataset"
)
finally:
# Clean up temporary files
os.unlink(txt_path)
os.unlink(json_path)
def analyze_and_save(model_file):
"""Main function for Gradio interface"""
try:
# Analyze model
analysis = analyze_onnx_model(model_file.name)
# Format results
text_output = format_analysis_text(analysis)
# Save to dataset
model_name = os.path.splitext(os.path.basename(model_file.name))[0]
save_to_hf_dataset(analysis, model_name)
# Create download files
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
txt_file = f"analysis_{model_name}_{timestamp}.txt"
json_file = f"analysis_{model_name}_{timestamp}.json"
with open(txt_file, 'w') as f:
f.write(text_output)
with open(json_file, 'w') as f:
json.dump(analysis, f, indent=2)
return text_output, txt_file, json_file
except Exception as e:
return f"Error: {str(e)}", None, None
# Create Gradio interface
with gr.Blocks(title="ONNX Model Analyzer") as demo:
gr.Markdown("# ONNX Model Analyzer")
gr.Markdown("Upload an ONNX model to analyze its structure and parameters.")
with gr.Row():
input_file = gr.File(label="Upload ONNX Model")
with gr.Row():
analyze_btn = gr.Button("Analyze Model")
with gr.Row():
output_text = gr.Textbox(label="Analysis Results", lines=20)
with gr.Row():
txt_output = gr.File(label="Download TXT Report")
json_output = gr.File(label="Download JSON Report")
analyze_btn.click(
fn=analyze_and_save,
inputs=[input_file],
outputs=[output_text, txt_output, json_output]
)
# Launch app
if __name__ == "__main__":
demo.launch() |