import gradio as gr import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import pickle filename = 'finalized_model.sav' # load the model from disk lineareg = pickle.load(open(filename, 'rb')) #function to predict the input hours def predict_score(hours): hours = np.array(hours) pred_score = lineareg.predict(hours.reshape(-1,1)) return np.round(pred_score[0], 2) input = gr.inputs.Number(label='Number of Hours studied') output = gr.outputs.Textbox(label='Predicted Score') gr.Interface( fn=predict_score, inputs=input, outputs=output).launch();