Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,647 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
import
|
|
|
|
| 3 |
import time
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
from
|
| 7 |
-
import
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
RESULT_REPO,
|
| 36 |
-
DATA_VERSION,
|
| 37 |
-
DATA_REPO,
|
| 38 |
-
HARD_RESULT_REPO,
|
| 39 |
-
ELO_REPO,
|
| 40 |
-
HARD_ELO_REPO,
|
| 41 |
-
SOLVE_REPO,
|
| 42 |
-
HARD_SOLVE_REPO,
|
| 43 |
-
HF_TOKEN,
|
| 44 |
-
QUEUE_REPO,
|
| 45 |
-
REPO_ID,
|
| 46 |
-
VOTES_REPO,
|
| 47 |
-
VOTES_PATH,
|
| 48 |
-
HF_HOME,
|
| 49 |
-
)
|
| 50 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 51 |
-
from src.execute import generate_command, is_running, default_command, stream_logs, find_result_file
|
| 52 |
-
from src.tools.plots import plot_elo_mle, plot_solve_rate
|
| 53 |
-
# from src.voting.vote_system import VoteManager, run_scheduler
|
| 54 |
-
|
| 55 |
-
# Configure logging
|
| 56 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 57 |
-
|
| 58 |
-
# Start ephemeral Spaces on PRs (see config in README.md)
|
| 59 |
-
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
|
| 60 |
-
|
| 61 |
-
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
|
| 62 |
-
# This controls whether a full initialization should be performed.
|
| 63 |
-
DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
|
| 64 |
-
NEW_DATA_ON_LEADERBOARD = True
|
| 65 |
-
LEADERBOARD_DF = None
|
| 66 |
-
HARD_LEADERBOARD_DF = None
|
| 67 |
-
ELO_TASK_DF = None
|
| 68 |
-
ELO_BENCH_DF = None
|
| 69 |
-
HARD_ELO_TASK_DF = None
|
| 70 |
-
HARD_ELO_BENCH_DF = None
|
| 71 |
-
COMPLETE_SOLVE_DF = None
|
| 72 |
-
INSTRUCT_SOLVE_DF = None
|
| 73 |
-
HARD_COMPLETE_SOLVE_DF = None
|
| 74 |
-
HARD_INSTRUCT_SOLVE_DF = None
|
| 75 |
-
|
| 76 |
-
DATA = datasets.load_dataset(DATA_REPO, "default", cache_dir=HF_HOME, split=DATA_VERSION,
|
| 77 |
-
verification_mode="no_checks")
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def filter_data(data, keyword):
|
| 81 |
-
if not keyword:
|
| 82 |
-
return data
|
| 83 |
-
filtered_data = [item for item in data if keyword.lower() in item['complete_prompt'].lower()]
|
| 84 |
-
return filtered_data
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def update_display(search_keyword, index, show_test):
|
| 88 |
-
filtered_data = filter_data(DATA, search_keyword)
|
| 89 |
-
|
| 90 |
-
if not filtered_data:
|
| 91 |
-
return ["No data available. Check the search criteria."] + [""] * 4 + [0, gr.update(maximum=0, value=0)]
|
| 92 |
-
|
| 93 |
-
max_index = len(filtered_data) - 1
|
| 94 |
-
index = min(max(0, index), max_index)
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
snippet4 = filtered_data[index]['test'] if show_test else ""
|
| 101 |
-
|
| 102 |
-
return [
|
| 103 |
-
task_id,
|
| 104 |
-
snippet1,
|
| 105 |
-
snippet2,
|
| 106 |
-
# snippet3,
|
| 107 |
-
snippet4,
|
| 108 |
-
len(filtered_data),
|
| 109 |
-
gr.update(maximum=max_index, value=index)
|
| 110 |
-
]
|
| 111 |
-
|
| 112 |
-
def restart_space():
|
| 113 |
-
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def time_diff_wrapper(func):
|
| 117 |
-
def wrapper(*args, **kwargs):
|
| 118 |
-
start_time = time.time()
|
| 119 |
-
result = func(*args, **kwargs)
|
| 120 |
-
end_time = time.time()
|
| 121 |
-
diff = end_time - start_time
|
| 122 |
-
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
|
| 123 |
-
return result
|
| 124 |
-
|
| 125 |
-
return wrapper
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
@time_diff_wrapper
|
| 129 |
-
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
|
| 130 |
-
"""Download dataset with exponential backoff retries."""
|
| 131 |
-
attempt = 0
|
| 132 |
-
while attempt < max_attempts:
|
| 133 |
-
try:
|
| 134 |
-
logging.info(f"Downloading {repo_id} to {local_dir}")
|
| 135 |
-
snapshot_download(
|
| 136 |
-
repo_id=repo_id,
|
| 137 |
-
local_dir=local_dir,
|
| 138 |
-
repo_type=repo_type,
|
| 139 |
-
tqdm_class=None,
|
| 140 |
-
etag_timeout=30,
|
| 141 |
-
max_workers=8,
|
| 142 |
-
)
|
| 143 |
-
logging.info("Download successful")
|
| 144 |
-
return
|
| 145 |
-
except Exception as e:
|
| 146 |
-
wait_time = backoff_factor**attempt
|
| 147 |
-
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
|
| 148 |
-
time.sleep(wait_time)
|
| 149 |
-
attempt += 1
|
| 150 |
-
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
|
| 151 |
-
|
| 152 |
-
def get_latest_data_leaderboard(
|
| 153 |
-
leaderboard_initial_df = None,
|
| 154 |
-
hard_leaderboard_initial_df = None,
|
| 155 |
-
elo_task_df = None,
|
| 156 |
-
elo_bench_df = None,
|
| 157 |
-
hard_elo_task_df = None,
|
| 158 |
-
hard_elo_bench_df = None,
|
| 159 |
-
complete_solve_df = None,
|
| 160 |
-
instruct_solve_df = None,
|
| 161 |
-
hard_complete_solve_df = None,
|
| 162 |
-
hard_instruct_solve_df = None
|
| 163 |
-
):
|
| 164 |
-
global NEW_DATA_ON_LEADERBOARD
|
| 165 |
-
global LEADERBOARD_DF
|
| 166 |
-
global HARD_LEADERBOARD_DF
|
| 167 |
-
global ELO_TASK_DF
|
| 168 |
-
global ELO_BENCH_DF
|
| 169 |
-
global HARD_ELO_TASK_DF
|
| 170 |
-
global HARD_ELO_BENCH_DF
|
| 171 |
-
global COMPLETE_SOLVE_DF
|
| 172 |
-
global INSTRUCT_SOLVE_DF
|
| 173 |
-
global HARD_COMPLETE_SOLVE_DF
|
| 174 |
-
global HARD_INSTRUCT_SOLVE_DF
|
| 175 |
-
|
| 176 |
-
if NEW_DATA_ON_LEADERBOARD:
|
| 177 |
-
print("Leaderboard updated at reload!")
|
| 178 |
-
leaderboard_dataset = datasets.load_dataset(
|
| 179 |
-
RESULT_REPO,
|
| 180 |
-
"default",
|
| 181 |
-
split="train",
|
| 182 |
-
cache_dir=HF_HOME,
|
| 183 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 184 |
-
verification_mode="no_checks"
|
| 185 |
-
)
|
| 186 |
-
LEADERBOARD_DF = get_leaderboard_df(
|
| 187 |
-
leaderboard_dataset=leaderboard_dataset,
|
| 188 |
-
cols=COLS,
|
| 189 |
-
)
|
| 190 |
-
hard_leaderboard_dataset = datasets.load_dataset(
|
| 191 |
-
HARD_RESULT_REPO,
|
| 192 |
-
"default",
|
| 193 |
-
split="train",
|
| 194 |
-
cache_dir=HF_HOME,
|
| 195 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 196 |
-
verification_mode="no_checks"
|
| 197 |
-
)
|
| 198 |
-
hard_leaderboard_df = get_leaderboard_df(
|
| 199 |
-
leaderboard_dataset=hard_leaderboard_dataset,
|
| 200 |
-
cols=COLS,
|
| 201 |
-
)
|
| 202 |
-
HARD_LEADERBOARD_DF = hard_leaderboard_df
|
| 203 |
-
|
| 204 |
-
elo_task_df = datasets.load_dataset(
|
| 205 |
-
ELO_REPO,
|
| 206 |
-
"default",
|
| 207 |
-
split="task_no_tie",
|
| 208 |
-
cache_dir=HF_HOME,
|
| 209 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 210 |
-
verification_mode="no_checks"
|
| 211 |
-
).to_pandas()
|
| 212 |
-
elo_bench_df = datasets.load_dataset(
|
| 213 |
-
ELO_REPO,
|
| 214 |
-
"default",
|
| 215 |
-
split="benchmark_tie",
|
| 216 |
-
cache_dir=HF_HOME,
|
| 217 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 218 |
-
verification_mode="no_checks"
|
| 219 |
-
).to_pandas()
|
| 220 |
-
ELO_TASK_DF = elo_task_df
|
| 221 |
-
ELO_BENCH_DF = elo_bench_df
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 237 |
-
verification_mode="no_checks"
|
| 238 |
-
).to_pandas()
|
| 239 |
-
HARD_ELO_TASK_DF = hard_elo_task_df
|
| 240 |
-
HARD_ELO_BENCH_DF = hard_elo_bench_df
|
| 241 |
-
|
| 242 |
-
complete_solve_df = datasets.load_dataset(
|
| 243 |
-
SOLVE_REPO,
|
| 244 |
-
"default",
|
| 245 |
-
split="complete",
|
| 246 |
-
cache_dir=HF_HOME,
|
| 247 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 248 |
-
verification_mode="no_checks"
|
| 249 |
-
).to_pandas()
|
| 250 |
-
instruct_solve_df = datasets.load_dataset(
|
| 251 |
-
SOLVE_REPO,
|
| 252 |
-
"default",
|
| 253 |
-
split="instruct",
|
| 254 |
-
cache_dir=HF_HOME,
|
| 255 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 256 |
-
verification_mode="no_checks"
|
| 257 |
-
).to_pandas()
|
| 258 |
-
COMPLETE_SOLVE_DF = complete_solve_df
|
| 259 |
-
INSTRUCT_SOLVE_DF = instruct_solve_df
|
| 260 |
-
|
| 261 |
-
hard_complete_solve_df = datasets.load_dataset(
|
| 262 |
-
HARD_SOLVE_REPO,
|
| 263 |
-
"default",
|
| 264 |
-
split="complete",
|
| 265 |
-
cache_dir=HF_HOME,
|
| 266 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 267 |
-
verification_mode="no_checks"
|
| 268 |
-
).to_pandas()
|
| 269 |
-
hard_instruct_solve_df = datasets.load_dataset(
|
| 270 |
-
HARD_SOLVE_REPO,
|
| 271 |
-
"default",
|
| 272 |
-
split="instruct",
|
| 273 |
-
cache_dir=HF_HOME,
|
| 274 |
-
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
|
| 275 |
-
verification_mode="no_checks"
|
| 276 |
-
).to_pandas()
|
| 277 |
-
HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
|
| 278 |
-
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
|
| 279 |
-
|
| 280 |
-
NEW_DATA_ON_LEADERBOARD = False
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
ELO_TASK_DF = elo_task_df
|
| 286 |
-
# ELO_BENCH_DF = elo_bench_df
|
| 287 |
-
# HARD_ELO_TASK_DF = hard_elo_task_df
|
| 288 |
-
HARD_ELO_BENCH_DF = hard_elo_bench_df
|
| 289 |
-
COMPLETE_SOLVE_DF = complete_solve_df
|
| 290 |
-
# INSTRUCT_SOLVE_DF = instruct_solve_df
|
| 291 |
-
# HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df
|
| 292 |
-
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df
|
| 293 |
-
|
| 294 |
-
return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
|
| 295 |
-
# return (HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF)
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
def init_space():
|
| 299 |
-
"""Initializes the application space, loading only necessary data."""
|
| 300 |
-
|
| 301 |
-
# Always redownload the leaderboard DataFrame
|
| 302 |
-
global LEADERBOARD_DF
|
| 303 |
-
global HARD_LEADERBOARD_DF
|
| 304 |
-
global ELO_TASK_DF
|
| 305 |
-
global ELO_BENCH_DF
|
| 306 |
-
global HARD_ELO_TASK_DF
|
| 307 |
-
global HARD_ELO_BENCH_DF
|
| 308 |
-
global COMPLETE_SOLVE_DF
|
| 309 |
-
global INSTRUCT_SOLVE_DF
|
| 310 |
-
global HARD_COMPLETE_SOLVE_DF
|
| 311 |
-
global HARD_INSTRUCT_SOLVE_DF
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
)
|
| 371 |
|
|
|
|
|
|
|
| 372 |
|
| 373 |
-
|
| 374 |
-
if
|
| 375 |
-
|
| 376 |
-
|
|
|
|
|
|
|
| 377 |
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
)
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
|
|
|
|
|
|
|
|
|
| 455 |
)
|
| 456 |
-
|
| 457 |
-
with gr.TabItem("📊 Elo Rating", id="full_elo"):
|
| 458 |
-
with gr.Column():
|
| 459 |
-
with gr.Group():
|
| 460 |
-
|
| 461 |
-
gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_")
|
| 462 |
-
task_elo_map = gr.Plot()
|
| 463 |
-
elo_task_gr = init_others(ELO_TASK_DF)
|
| 464 |
-
demo.load(plot_elo_mle, [elo_task_gr], task_elo_map)
|
| 465 |
-
with gr.Group():
|
| 466 |
-
gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)")
|
| 467 |
-
bench_elo_map = gr.Plot()
|
| 468 |
-
elo_bench_gr = init_others(ELO_BENCH_DF)
|
| 469 |
-
demo.load(plot_elo_mle, [elo_bench_gr], bench_elo_map)
|
| 470 |
-
|
| 471 |
-
with gr.TabItem("🧩 Solve Rate", id="full_solve"):
|
| 472 |
-
with gr.Column():
|
| 473 |
-
complete_map = gr.Plot()
|
| 474 |
-
complete_solve_gr = init_others(COMPLETE_SOLVE_DF)
|
| 475 |
-
demo.load(plot_solve_rate, [complete_solve_gr,
|
| 476 |
-
gr.Textbox("Complete", visible=False),
|
| 477 |
-
], complete_map)
|
| 478 |
-
instruct_map = gr.Plot()
|
| 479 |
-
instruct_solve_gr = init_others(INSTRUCT_SOLVE_DF)
|
| 480 |
-
demo.load(plot_solve_rate, [instruct_solve_gr,
|
| 481 |
-
gr.Textbox("Instruct", visible=False),
|
| 482 |
-
], instruct_map)
|
| 483 |
-
with gr.TabItem("📝 About", id=3):
|
| 484 |
-
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
|
| 485 |
-
with gr.TabItem("🔎 Data Viewer", id="viewer"):
|
| 486 |
-
search_input = gr.Textbox(label="Search by keyword")
|
| 487 |
-
count_output = gr.Number(label="Number of filtered items")
|
| 488 |
-
index_slider = gr.Slider(minimum=0, maximum=len(DATA)-1, step=1, label="Select Index")
|
| 489 |
-
# show_solution = gr.Checkbox(label="Show Solution")
|
| 490 |
-
show_test = gr.Checkbox(label="Show Test Cases")
|
| 491 |
-
update_button = gr.Button("Update")
|
| 492 |
-
|
| 493 |
-
task_id_output = gr.Textbox(label="Task ID")
|
| 494 |
-
code_completion = gr.Code(language="python", label="Code Completion")
|
| 495 |
-
nl_instruction = gr.Code(language="markdown", label="Natural Language Instruction")
|
| 496 |
-
# solution = gr.Code(language="python", label="Solution")
|
| 497 |
-
test_cases = gr.Code(language="python", label="Test Cases")
|
| 498 |
-
|
| 499 |
-
update_button.click(
|
| 500 |
-
update_display,
|
| 501 |
-
inputs=[search_input, index_slider, show_test],
|
| 502 |
-
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
|
| 503 |
-
)
|
| 504 |
-
|
| 505 |
-
# Initial load
|
| 506 |
-
demo.load(
|
| 507 |
-
update_display,
|
| 508 |
-
inputs=[search_input, index_slider, show_test],
|
| 509 |
-
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider]
|
| 510 |
-
)
|
| 511 |
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
def start_evaluation(command, jsonl_file, subset, split):
|
| 551 |
-
extra = subset + "_" if subset != "full" else ""
|
| 552 |
-
if jsonl_file is not None:
|
| 553 |
-
result_path = os.path.basename(jsonl_file.name).replace(".jsonl", f"_{extra}eval_results.json")
|
| 554 |
-
else:
|
| 555 |
-
result_path = None
|
| 556 |
-
|
| 557 |
-
for log in stream_logs(command, jsonl_file):
|
| 558 |
-
if jsonl_file is not None:
|
| 559 |
-
yield log, gr.update(value=result_path, label=result_path), gr.update()
|
| 560 |
-
else:
|
| 561 |
-
yield log, gr.update(), gr.update()
|
| 562 |
-
result_file = find_result_file()
|
| 563 |
-
if result_file:
|
| 564 |
-
return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file)
|
| 565 |
-
# gr.Button(visible=False)#,
|
| 566 |
-
# gr.DownloadButton(label="Download Result", value=result_file, visible=True))
|
| 567 |
-
else:
|
| 568 |
-
return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path)
|
| 569 |
-
# gr.Button("Run Evaluation", visible=True),
|
| 570 |
-
# gr.DownloadButton(visible=False))
|
| 571 |
-
submit_btn.click(start_evaluation,
|
| 572 |
-
inputs=[command_output, jsonl_file, subset, split],
|
| 573 |
-
outputs=[log_output, download_btn])
|
| 574 |
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 584 |
|
| 585 |
-
|
| 586 |
-
#
|
| 587 |
-
#
|
| 588 |
-
#
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
#
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
secrets=config.get("secrets"),
|
| 615 |
-
hardware=config.get("hardware"),
|
| 616 |
-
storage=config.get("storage"),
|
| 617 |
)
|
|
|
|
|
|
|
| 618 |
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
# Add webhooks
|
| 623 |
-
@webhooks_server.add_webhook
|
| 624 |
-
def update_leaderboard(payload: WebhookPayload) -> None:
|
| 625 |
-
"""Redownloads the leaderboard dataset each time it updates"""
|
| 626 |
-
if payload.repo.type == "dataset" and payload.event.action == "update":
|
| 627 |
-
global NEW_DATA_ON_LEADERBOARD
|
| 628 |
-
if NEW_DATA_ON_LEADERBOARD:
|
| 629 |
-
return
|
| 630 |
-
NEW_DATA_ON_LEADERBOARD = True
|
| 631 |
-
|
| 632 |
-
for repo in [RESULT_REPO, HARD_RESULT_REPO, ELO_REPO, HARD_ELO_REPO, SOLVE_REPO, HARD_SOLVE_REPO]:
|
| 633 |
-
datasets.load_dataset(
|
| 634 |
-
repo,
|
| 635 |
-
"default",
|
| 636 |
-
cache_dir=HF_HOME,
|
| 637 |
-
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD,
|
| 638 |
-
verification_mode="no_checks"
|
| 639 |
-
)
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
webhooks_server.launch()
|
| 644 |
-
|
| 645 |
-
scheduler = BackgroundScheduler()
|
| 646 |
-
scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h as backup in case automatic updates are not working
|
| 647 |
-
scheduler.start()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import multiprocessing
|
| 4 |
import os
|
| 5 |
+
import pickle
|
| 6 |
+
import threading
|
| 7 |
import time
|
| 8 |
+
from collections import Counter, defaultdict
|
| 9 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed, wait, FIRST_COMPLETED
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from typing import Any, Dict, List, Tuple
|
| 12 |
+
from warnings import warn
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
from termcolor import cprint
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
from bigcodebench.data import get_bigcodebench, get_bigcodebench_hash, load_solutions
|
| 19 |
+
from bigcodebench.data.utils import CACHE_DIR
|
| 20 |
+
from bigcodebench.eval import PASS, compatible_eval_result, estimate_pass_at_k, untrusted_check
|
| 21 |
+
from bigcodebench.gen.util import trusted_check
|
| 22 |
+
|
| 23 |
+
Result = Tuple[str, List[bool]]
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_groundtruth(n_workers, problems, hashcode, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit):
|
| 27 |
+
cache_file = os.path.join(CACHE_DIR, f"{hashcode}.pkl")
|
| 28 |
+
if os.path.exists(cache_file):
|
| 29 |
+
if check_gt_only:
|
| 30 |
+
os.remove(cache_file)
|
| 31 |
+
else:
|
| 32 |
+
print(f"Load from ground-truth from {cache_file}")
|
| 33 |
+
with open(cache_file, "rb") as f:
|
| 34 |
+
return pickle.load(f)
|
| 35 |
+
|
| 36 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 37 |
+
print("\nAsserting the groundtruth...")
|
| 38 |
+
tbegin = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
with ProcessPoolExecutor(max_workers=n_workers) as executor:
|
| 41 |
+
futures = []
|
| 42 |
+
n_samples = 0
|
| 43 |
+
expected_time = dict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
for problem in problems.values():
|
| 46 |
+
args = (
|
| 47 |
+
problem["complete_prompt"] + "\n" + problem["canonical_solution"],
|
| 48 |
+
problem["test"],
|
| 49 |
+
problem["task_id"],
|
| 50 |
+
max_as_limit,
|
| 51 |
+
max_data_limit,
|
| 52 |
+
max_stack_limit,
|
| 53 |
+
min_time_limit,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
futures.append(executor.submit(trusted_check, *args))
|
| 57 |
+
n_samples += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
for future in tqdm(as_completed(futures), total=n_samples):
|
| 60 |
+
result = future.result()
|
| 61 |
+
expected_time[result["task_id"]] = result["time"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
print(f"Expected outputs computed in {time.time() - tbegin:.2f}s")
|
| 64 |
+
|
| 65 |
+
if any(expected_time.values()):
|
| 66 |
+
with open(cache_file, "wb") as f:
|
| 67 |
+
pickle.dump(expected_time, f)
|
| 68 |
+
|
| 69 |
+
return expected_time
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def check_correctness(
|
| 73 |
+
completion_id: int,
|
| 74 |
+
problem: Dict[str, Any],
|
| 75 |
+
solution: str,
|
| 76 |
+
max_as_limit: float,
|
| 77 |
+
max_data_limit: float,
|
| 78 |
+
max_stack_limit: float,
|
| 79 |
+
identifier=None,
|
| 80 |
+
min_time_limit: float = 0.1,
|
| 81 |
+
gt_time_limit: float = 2.0,
|
| 82 |
+
) -> Dict[str, Result]:
|
| 83 |
+
ret = {
|
| 84 |
+
"completion_id": completion_id,
|
| 85 |
+
"task_id": problem["task_id"],
|
| 86 |
+
"_identifier": identifier,
|
| 87 |
+
"solution": solution,
|
| 88 |
+
}
|
| 89 |
+
ret["base"] = untrusted_check(
|
| 90 |
+
solution,
|
| 91 |
+
problem["test"],
|
| 92 |
+
problem["entry_point"],
|
| 93 |
+
max_as_limit,
|
| 94 |
+
max_data_limit,
|
| 95 |
+
max_stack_limit,
|
| 96 |
+
min_time_limit,
|
| 97 |
+
gt_time_limit,
|
| 98 |
+
)
|
| 99 |
+
return ret
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def evaluate(
|
| 103 |
+
split: str,
|
| 104 |
+
subset: str,
|
| 105 |
+
samples: str,
|
| 106 |
+
pass_k: str="1,5,10",
|
| 107 |
+
parallel: int = None,
|
| 108 |
+
min_time_limit: float = 1,
|
| 109 |
+
max_as_limit: int = 30 * 1024,
|
| 110 |
+
max_data_limit: int = 30 * 1024,
|
| 111 |
+
max_stack_limit: int = 10,
|
| 112 |
+
check_gt_only: bool = False,
|
| 113 |
+
no_gt: bool = False,
|
| 114 |
+
):
|
| 115 |
+
pass_k = [int(k.strip()) for k in pass_k.split(',') if k.strip().isdigit()]
|
| 116 |
+
if parallel is None:
|
| 117 |
+
n_workers = max(1, multiprocessing.cpu_count() // 2)
|
| 118 |
+
else:
|
| 119 |
+
n_workers = parallel
|
|
|
|
| 120 |
|
| 121 |
+
if check_gt_only:
|
| 122 |
+
samples = "__dummy__.jsonl"
|
| 123 |
|
| 124 |
+
extra = subset + "_" if subset != "full" else ""
|
| 125 |
+
if os.path.isdir(samples):
|
| 126 |
+
result_path = os.path.join(samples, f"{extra}eval_results.json")
|
| 127 |
+
else:
|
| 128 |
+
assert samples.endswith(".jsonl")
|
| 129 |
+
result_path = samples.replace(".jsonl", f"_{extra}eval_results.json")
|
| 130 |
|
| 131 |
+
problems = get_bigcodebench(subset=subset)
|
| 132 |
+
dataset_hash = get_bigcodebench_hash(subset=subset)
|
| 133 |
+
|
| 134 |
+
if not no_gt:
|
| 135 |
+
expected_time = get_groundtruth(n_workers, problems, dataset_hash, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit)
|
| 136 |
+
else:
|
| 137 |
+
expected_time = {task_id: None for task_id in problems}
|
| 138 |
|
| 139 |
+
gt_pass_rate = np.mean([1 if v is not None else 0 for k, v in expected_time.items() if k in problems])
|
| 140 |
+
failed_tasks = [k for k, v in expected_time.items() if v is None and k in problems]
|
| 141 |
+
|
| 142 |
+
if os.path.isfile(result_path):
|
| 143 |
+
with open(result_path, "r") as f:
|
| 144 |
+
results = json.load(f)
|
| 145 |
+
results = compatible_eval_result(results)
|
| 146 |
+
else:
|
| 147 |
+
if check_gt_only:
|
| 148 |
+
if gt_pass_rate > 0.99:
|
| 149 |
+
cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}", "green")
|
| 150 |
+
else:
|
| 151 |
+
cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}\nPlease be cautious!", "red")
|
| 152 |
+
if len(failed_tasks) > 0:
|
| 153 |
+
cprint(f"Failed tasks: {failed_tasks}", "red")
|
| 154 |
+
return {"gt_pass_rate":float(gt_pass_rate), "failed_tasks": failed_tasks}
|
| 155 |
+
|
| 156 |
+
results = {
|
| 157 |
+
"date": datetime.now().strftime("%Y-%m-%d %H:%M"),
|
| 158 |
+
"eval": {},
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
with ProcessPoolExecutor(max_workers=n_workers) as executor:
|
| 162 |
+
futures = []
|
| 163 |
+
completion_id = Counter()
|
| 164 |
+
n_samples = 0
|
| 165 |
+
eval_results = defaultdict(list) # task_id ->
|
| 166 |
+
remainings = set()
|
| 167 |
+
|
| 168 |
+
print("Reading samples...")
|
| 169 |
+
for sample in tqdm(load_solutions(samples)):
|
| 170 |
+
task_id = sample["task_id"]
|
| 171 |
+
|
| 172 |
+
if task_id not in problems:
|
| 173 |
+
warn(
|
| 174 |
+
f"Task {task_id} is found in the samples but not found in the dataset"
|
| 175 |
+
)
|
| 176 |
+
continue
|
| 177 |
+
solution = (
|
| 178 |
+
sample["solution"]
|
| 179 |
+
if "solution" in sample
|
| 180 |
+
else problems[task_id]["complete_prompt"] + sample["completion"]
|
| 181 |
)
|
| 182 |
+
if "sanitized-calibrated" in samples:
|
| 183 |
+
solution = problems[task_id]["code_prompt"] + "\n pass\n" + solution
|
| 184 |
+
remainings.add(sample["_identifier"])
|
| 185 |
+
args = (
|
| 186 |
+
completion_id[task_id],
|
| 187 |
+
problems[task_id],
|
| 188 |
+
solution,
|
| 189 |
+
max_as_limit,
|
| 190 |
+
max_data_limit,
|
| 191 |
+
max_stack_limit,
|
| 192 |
+
sample["_identifier"],
|
| 193 |
+
min_time_limit,
|
| 194 |
+
expected_time[task_id] if expected_time[task_id] else 20
|
| 195 |
+
)
|
| 196 |
+
futures.append(executor.submit(check_correctness, *args))
|
| 197 |
+
completion_id[task_id] += 1
|
| 198 |
+
n_samples += 1
|
| 199 |
+
|
| 200 |
+
assert n_samples == len(remainings), "Missing problems in unfinished"
|
| 201 |
+
assert len(completion_id) == len(problems), "Missing problems in samples"
|
| 202 |
+
|
| 203 |
+
def stucking_checker():
|
| 204 |
+
not_done = futures
|
| 205 |
+
while len(not_done) > 0:
|
| 206 |
+
done, not_done = wait(not_done, timeout=240, return_when=FIRST_COMPLETED)
|
| 207 |
+
|
| 208 |
+
if len(done) == 0:
|
| 209 |
+
warn("No samples have finished testing in the last 240s")
|
| 210 |
+
warn(f"{len(remainings)} samples to be tested: {remainings}")
|
| 211 |
+
|
| 212 |
+
threading.Thread(target=stucking_checker).start()
|
| 213 |
+
|
| 214 |
+
for future in tqdm(as_completed(futures), total=n_samples):
|
| 215 |
+
result = future.result()
|
| 216 |
+
remainings.remove(result["_identifier"])
|
| 217 |
+
eval_results[result["task_id"]].append(result)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# sort the results for each problem by completion_id
|
| 221 |
+
for task_id, task_results in eval_results.items():
|
| 222 |
+
task_results.sort(key=lambda x: x["completion_id"])
|
| 223 |
+
results["eval"][task_id] = []
|
| 224 |
+
for res in task_results:
|
| 225 |
+
stat, details = res["base"]
|
| 226 |
+
results["eval"][task_id].append(
|
| 227 |
+
{
|
| 228 |
+
"task_id": task_id,
|
| 229 |
+
"solution": res["solution"],
|
| 230 |
+
"status": stat,
|
| 231 |
+
"details": details,
|
| 232 |
+
}
|
| 233 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
# Calculate pass@k.
|
| 236 |
+
total = np.array([len(r) for k, r in results["eval"].items() if k in problems])
|
| 237 |
+
base_correct = []
|
| 238 |
+
|
| 239 |
+
for key, res in results["eval"].items():
|
| 240 |
+
if key not in problems:
|
| 241 |
+
continue
|
| 242 |
+
bc = sum([r["status"] == PASS for r in res])
|
| 243 |
+
base_correct.append(bc)
|
| 244 |
+
|
| 245 |
+
base_correct = np.array(base_correct)
|
| 246 |
+
|
| 247 |
+
pass_at_k = {
|
| 248 |
+
f"pass@{k}": float(estimate_pass_at_k(total, base_correct, k).mean())
|
| 249 |
+
for k in pass_k
|
| 250 |
+
if total.min() >= k
|
| 251 |
+
}
|
| 252 |
+
pass_at_k["gt_pass_rate"] = float(gt_pass_rate)
|
| 253 |
+
pass_at_k["failed_tasks"] = failed_tasks
|
| 254 |
+
return pass_at_k
|
| 255 |
+
|
| 256 |
+
# mode = "-calibrated" if "sanitized-calibrated" in samples else ""
|
| 257 |
+
# extra = subset.capitalize()
|
| 258 |
+
# split = split.capitalize()
|
| 259 |
+
# cprint(f"BigCodeBench-{split}{mode} ({extra})", "green")
|
| 260 |
+
|
| 261 |
+
# if no_gt:
|
| 262 |
+
# cprint(f"Groundtruth is not checked", "yellow")
|
| 263 |
+
# else:
|
| 264 |
+
# if gt_pass_rate > 0.99:
|
| 265 |
+
# cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}", "green")
|
| 266 |
+
# else:
|
| 267 |
+
# cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}\nPlease be cautious!", "red")
|
| 268 |
+
|
| 269 |
+
# if len(failed_tasks) > 0:
|
| 270 |
+
# cprint(f"Failed tasks: {failed_tasks}", "red")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
+
# for k, v in pass_at_k.items():
|
| 273 |
+
# cprint(f"{k}:\t{v:.3f}", "green")
|
| 274 |
+
|
| 275 |
+
# # save results
|
| 276 |
+
# if os.path.isfile(result_path):
|
| 277 |
+
# decision = ""
|
| 278 |
+
# while decision.lower() not in ["y", "n"]:
|
| 279 |
+
# print(f"{result_path} already exists. Press [Y/N] to overwrite or exit...")
|
| 280 |
+
# decision = input()
|
| 281 |
+
|
| 282 |
+
# if decision.lower() == "y":
|
| 283 |
+
# # mv the file to a backup
|
| 284 |
+
# new_path = result_path + ".bak"
|
| 285 |
+
# while os.path.isfile(new_path):
|
| 286 |
+
# new_path += ".bak"
|
| 287 |
+
# os.rename(result_path, new_path)
|
| 288 |
+
# print(f"Backup {result_path} to {new_path}")
|
| 289 |
+
|
| 290 |
+
# if not os.path.isfile(result_path):
|
| 291 |
+
# with open(result_path, "w") as f:
|
| 292 |
+
# json.dump(results, f, indent=2)
|
| 293 |
+
|
| 294 |
+
# if save_pass_rate:
|
| 295 |
+
# pass_at_k_path = result_path.replace("_eval_results.json", "_pass_at_k.json")
|
| 296 |
+
# pass_at_k["model"] = os.path.basename(samples).split("--bigcodebench-")[0]
|
| 297 |
+
# pass_at_k["calibrated"] = "sanitized-calibrated" in samples
|
| 298 |
+
# pass_at_k["subset"] = subset
|
| 299 |
+
|
| 300 |
+
# def save_pass_at_k():
|
| 301 |
+
# with open(pass_at_k_path, "w") as f:
|
| 302 |
+
# json.dump(pass_at_k, f, indent=2)
|
| 303 |
+
|
| 304 |
+
# if os.path.isfile(pass_at_k_path):
|
| 305 |
+
# saved_pass_at_k = json.load(open(pass_at_k_path, "r"))
|
| 306 |
+
# # compare saved_pass_at_k with pass_at_k
|
| 307 |
+
# for k in saved_pass_at_k.keys():
|
| 308 |
+
# if pass_at_k[k] != saved_pass_at_k[k]:
|
| 309 |
+
# cprint(f"Warning: {k} is different from the saved one", "yellow")
|
| 310 |
|
| 311 |
+
# # ask user whether to save the pass@k
|
| 312 |
+
# decision = ""
|
| 313 |
+
# while decision.lower() not in ["y", "n"]:
|
| 314 |
+
# print(f"Save pass@k to {pass_at_k_path}? [Y/N]")
|
| 315 |
+
# decision = input()
|
| 316 |
+
# if decision.lower() == "y":
|
| 317 |
+
# save_pass_at_k()
|
| 318 |
+
|
| 319 |
+
# else:
|
| 320 |
+
# save_pass_at_k()
|
| 321 |
+
|
| 322 |
+
def run_gradio():
|
| 323 |
+
interface = gr.Interface(
|
| 324 |
+
fn=evaluate,
|
| 325 |
+
inputs=[
|
| 326 |
+
gr.Dropdown(["complete", "instruct"], label="Split"),
|
| 327 |
+
gr.Dropdown(["full", "hard"], label="Subset"),
|
| 328 |
+
gr.File(label="Samples Path (.jsonl)"),
|
| 329 |
+
gr.Textbox(label="Pass k Values (comma-separated)", value="1,5,10"),
|
| 330 |
+
gr.Slider(1, multiprocessing.cpu_count(), step=1, label="Parallel Workers"),
|
| 331 |
+
gr.Slider(0.1, 10, step=0.1, label="Min Time Limit", value=1),
|
| 332 |
+
gr.Slider(1, 100 * 1024, step=1024, label="Max AS Limit", value=30 * 1024),
|
| 333 |
+
gr.Slider(1, 100 * 1024, step=1024, label="Max Data Limit", value=30 * 1024),
|
| 334 |
+
gr.Slider(1, 100, step=1, label="Max Stack Limit", value=10),
|
| 335 |
+
gr.Checkbox(label="Check GT Only"),
|
| 336 |
+
gr.Checkbox(label="No GT"),
|
| 337 |
+
],
|
| 338 |
+
outputs="text",
|
| 339 |
+
# concurrency_limit=None
|
|
|
|
|
|
|
|
|
|
| 340 |
)
|
| 341 |
+
interface.queue(default_concurrency_limit=None)
|
| 342 |
+
interface.launch(show_error=True)
|
| 343 |
|
| 344 |
+
if __name__ == "__main__":
|
| 345 |
+
run_gradio()
|
| 346 |
+
# evaluate("complete", "hard", "meta-llama--Llama-3.2-3B-Instruct--bigcodebench-instruct--vllm-0-1.jsonl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|