File size: 18,422 Bytes
a05515b
 
8476633
a05515b
 
 
 
 
 
 
 
 
 
8476633
a05515b
6520230
a05515b
 
9e6b464
 
 
 
 
 
 
 
 
a05515b
 
 
 
 
9e6b464
a05515b
 
 
9e6b464
 
a05515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6b464
 
 
a05515b
9e6b464
 
 
 
a05515b
9e6b464
 
a05515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354d0de
a05515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354d0de
9e6b464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05515b
 
 
 
 
 
 
354d0de
a05515b
 
 
 
 
 
9e6b464
a05515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6b464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354d0de
a05515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354d0de
a05515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7223a
 
88daa62
2816cdf
 
a05515b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# app.py

import gradio as gr
import feedparser
from bs4 import BeautifulSoup
from datetime import datetime, timedelta
import pytz
from typing import List, Dict
from sentence_transformers import SentenceTransformer
import chromadb
import gc
import json
import os

class BrockEventsRAG:
    def __init__(self):
        """Initialize the RAG system with improved caching"""
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        self.embeddings = HuggingFaceEmbeddings(model_name='all-MiniLM-L6-v2')
        
       # ChromaDB client setup
        self.chroma_client = chromadb.Client(Settings(persist_directory="chroma_db", chroma_db_impl="duckdb+parquet"))

        # LLM model setup
        self.tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
        self.llm = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")

        
        # Get current date range
        self.eastern = pytz.timezone('America/New_York')
        self.today = datetime.now(self.eastern).replace(hour=0, minute=0, second=0, microsecond=0)
        self.date_range_end = self.today + timedelta(days=14)

        # Cache directory setup
        os.makedirs("cache", exist_ok=True)
        self.cache_file = "cache/events_cache.json"


        # Initialize or reset collection
        try:
            self.collection = self.chroma_client.create_collection(
                name="brock_events",
                metadata={"description": "Brock University Events Database"}
            )
        except Exception:
            self.chroma_client.delete_collection("brock_events")
            self.collection = self.chroma_client.create_collection(
                name="brock_events",
                metadata={"description": "Brock University Events Database"}
            )
        
        # Load initial events
        self.update_database()
        
    def fetch_rss_feed(self, url: str) -> List[Dict]:
        """Fetch and parse RSS feed from the given URL"""
        try:
            feed = feedparser.parse(url)
            entries = feed.entries
            print(f"Fetched {len(entries)} entries from the feed.")
            return entries
        except Exception as e:
            print(f"Error fetching RSS feed: {e}")
            return []
            
    def parse_event_datetime(self, entry) -> tuple:
        """Parse start and end times from both RSS and HTML"""
        try:
            # First try to get times from the events namespace
            start_time = entry.get('start', None)
            end_time = entry.get('end', None)
            
            # Parse the RSS feed times if available
            if start_time:
                start_dt = datetime.strptime(start_time, '%a, %d %b %Y %H:%M:%S %Z')
                start_dt = pytz.UTC.localize(start_dt).astimezone(self.eastern)
            else:
                start_dt = None
                
            if end_time:
                end_dt = datetime.strptime(end_time, '%a, %d %b %Y %H:%M:%S %Z')
                end_dt = pytz.UTC.localize(end_dt).astimezone(self.eastern)
            else:
                end_dt = None
            
            # If we didn't get times from RSS, try HTML
            if not start_dt or not end_dt:
                soup = BeautifulSoup(entry.description, 'html.parser')
                start_elem = soup.find('time', class_='dt-start')
                end_elem = soup.find('time', class_='dt-end')
                
                if start_elem and 'datetime' in start_elem.attrs:
                    dt_str = start_elem['datetime'].split('.')[0]
                    start_dt = datetime.strptime(dt_str, '%Y-%m-%dT%H:%M:%S')
                    start_dt = self.eastern.localize(start_dt)
                    
                if end_elem and 'datetime' in end_elem.attrs:
                    dt_str = end_elem['datetime'].split('.')[0]
                    end_dt = datetime.strptime(dt_str, '%Y-%m-%dT%H:%M:%S')
                    end_dt = self.eastern.localize(end_dt)
            
            return start_dt, end_dt
            
        except Exception as e:
            print(f"Error parsing dates: {e}")
            return None, None

    def get_location(self, entry) -> str:
        """Extract location from both RSS and HTML"""
        try:
            # First try RSS events namespace
            location = entry.get('location', None)
            
            # If not found, try HTML
            if not location:
                soup = BeautifulSoup(entry.description, 'html.parser')
                location_elem = soup.find('span', class_='p-location')
                if location_elem:
                    location = location_elem.get_text().strip()
            
            return location if location else "Location not specified"
            
        except Exception as e:
            print(f"Error getting location: {e}")
            return "Location not specified"

    def process_event(self, entry) -> Dict:
        """Process a single event entry"""
        try:
            # Get times
            start_time, end_time = self.parse_event_datetime(entry)
            
            # Skip if event is not in our date range
            if not start_time or not self.is_event_in_range(start_time):
                return None
            
            # Get location
            location = self.get_location(entry)
            
            # Get categories
            categories = [tag.term for tag in entry.get('tags', [])]
            categories_str = '; '.join(categories) if categories else 'No categories'
            
            # Get hosts
            hosts = entry.get('host', [])
            if not isinstance(hosts, list):
                hosts = [hosts]
            hosts_str = '; '.join(hosts) if hosts else 'No host specified'
            
            # Clean description
            soup = BeautifulSoup(entry.description, 'html.parser')
            description = ' '.join(soup.get_text().split())
            
            return {
                'title': entry.title,
                'start_time': start_time,
                'end_time': end_time,
                'location': location,
                'categories': categories_str,
                'hosts': hosts_str,
                'description': description,
                'link': entry.link,
                'guid': entry.guid
            }
            
        except Exception as e:
            print(f"Error processing event {entry.get('title', 'Unknown')}: {e}")
            return None

    def is_event_in_range(self, event_time: datetime) -> bool:
        """Check if event falls within our date range"""
        if not event_time:
            return False
        return self.today <= event_time <= self.date_range_end

    def format_event_text(self, event: Dict) -> str:
        """Format event information for embedding"""
        return f"""
        Event: {event['title']}
        Date: {event['start_time'].strftime('%A, %B %d, %Y')}
        Time: {event['start_time'].strftime('%I:%M %p')} to {event['end_time'].strftime('%I:%M %p') if event['end_time'] else 'not specified'}
        Location: {event['location']}
        Categories: {event['categories']}
        Hosted by: {event['hosts']}
        Description: {event['description'][:500]}
        """

    def update_database(self):
        """Update database with events in date range"""
        print("Fetching events...")
        feed = feedparser.parse("https://experiencebu.brocku.ca/events.rss")
        print(f"Found {len(feed.entries)} total events")
        
        # Process events
        valid_events = []
        for entry in feed.entries:
            event = self.process_event(entry)
            if event:  # Only include events in our date range
                valid_events.append(event)
        
        print(f"Found {len(valid_events)} events in the next 14 days")
        
        if not valid_events:
            print("No events found in date range")
            return
        
        # Prepare data for database
        documents = [self.format_event_text(event) for event in valid_events]
        metadatas = [{
            'title': event['title'],
            'date': event['start_time'].strftime('%Y-%m-%d'),
            'time': event['start_time'].strftime('%I:%M %p'),
            'location': event['location'],
            'categories': event['categories'],
            'link': event['link']
        } for event in valid_events]
        ids = [f"event_{i}" for i in range(len(valid_events))]
        
        # Generate embeddings and add to database
        try:
            embeddings = self.model.encode(documents)
            self.collection.add(
                documents=documents,
                embeddings=embeddings.tolist(),
                metadatas=metadatas,
                ids=ids
            )
            print(f"Successfully added {len(valid_events)} events to database")
        except Exception as e:
            print(f"Error adding events to database: {e}")
        
        # Save to cache
        cache_data = {
            'last_update': datetime.now().isoformat(),
            'events': valid_events
        }
        self.save_cache(cache_data)
        
        # Clean up
        gc.collect()

    def query(self, question: str, n_results: int = 3) -> List[Dict]:
        """Query the database"""
        try:
            question_embedding = self.model.encode(question)
            results = self.collection.query(
                query_embeddings=[question_embedding.tolist()],
                n_results=n_results,
                include=['documents', 'metadatas', 'distances']
            )
            return results
        except Exception as e:
            print(f"Error during query: {e}")
            return None
            
    def generate_response_with_llm(events: List[Dict]) -> str:
        """Use the LLM to generate a natural language response for the given events."""
        try:
            if not events:
                input_text = "There are no events matching the query. How should I respond?"
            else:
                event_summaries = "\n".join([
                    f"Event: {event['title']}. Start: {event['start_time']}, Location: {event['location']}."
                    for event in events
                ])
                input_text = f"Format this information into a friendly response: {event_summaries}"
            
            inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
            outputs = self.llm.generate(**inputs)
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            return response
        except Exception as e:
            print(f"Error generating response: {e}")
            return "Sorry, I couldn't generate a response."

 
    def generate_response(self, question: str, history: list) -> str:
        """Generate a response based on the query and chat history"""
        try:
            # Query the database
            results = self.query(question)
            if not results or not results['documents'] or not results['documents'][0]:
                return "I couldn't find any events matching your query. Try asking about upcoming events in a different way!"

            # Analyze the question type
            question_lower = question.lower()
            is_time_query = any(word in question_lower for word in ['when', 'time', 'date', 'week', 'today', 'tomorrow'])
            is_location_query = any(word in question_lower for word in ['where', 'location', 'place', 'building', 'room'])
            
            # Format the response
            response = generate_response_with_llm(matched_events)
            
            # Add top 3 matching events
            for i, (doc, metadata) in enumerate(zip(results['documents'][0][:3], results['metadatas'][0][:3]), 1):
                response += f"{i}. **{metadata['title']}**\n"
                response += f"πŸ“… {metadata['date']} at {metadata['time']}\n"
                response += f"πŸ“ {metadata['location']}\n"
                if 'categories' in metadata:
                    response += f"🏷️ {metadata['categories']}\n"
                response += f"πŸ”— More info: {metadata['link']}\n\n"
            
            # Add a helpful prompt
            response += "\nYou can ask me for more specific details about any of these events!"
            return response
            
        except Exception as e:
            print(f"Error generating response: {e}")
            return "I encountered an error while searching for events. Please try asking in a different way."
            def save_cache(self, data: dict):
        """Save events data to cache file"""
        try:
            # Convert datetime objects to strings for JSON serialization
            serializable_data = {
                'last_update': data['last_update'],
                'events': []
            }
            
            for event in data['events']:
                event_copy = event.copy()
                # Convert datetime objects to strings
                if event_copy.get('start_time'):
                    event_copy['start_time'] = event_copy['start_time'].isoformat()
                if event_copy.get('end_time'):
                    event_copy['end_time'] = event_copy['end_time'].isoformat()
                serializable_data['events'].append(event_copy)
            
            with open(self.cache_file, 'w', encoding='utf-8') as f:
                json.dump(serializable_data, f, ensure_ascii=False, indent=2)
            print(f"Cache saved successfully to {self.cache_file}")
            
        except Exception as e:
            print(f"Error saving cache: {e}")
"""
    def load_cache(self) -> dict:
        #Load and parse cached events data
        try:
            if os.path.exists(self.cache_file):
                with open(self.cache_file, 'r', encoding='utf-8') as f:
                    data = json.load(f)
                
                # Convert string timestamps back to datetime objects
                for event in data['events']:
                    if event.get('start_time'):
                        event['start_time'] = datetime.fromisoformat(event['start_time'])
                    if event.get('end_time'):
                        event['end_time'] = datetime.fromisoformat(event['end_time'])
                
                return data
            return {'last_update': None, 'events': []}
            
        except Exception as e:
            print(f"Error loading cache: {e}")
            return {'last_update': None, 'events': []}

    def should_update_cache(self) -> bool:
        #Check if cache needs updating (older than 24 hours)
        try:
            cached_data = self.load_cache()
            if not cached_data['last_update']:
                return True
                
            last_update = datetime.fromisoformat(cached_data['last_update'])
            time_since_update = datetime.now() - last_update
            
            return time_since_update.total_seconds() > 86400  # 24 hours
            
        except Exception as e:
            print(f"Error checking cache: {e}")
            return True
"""

def create_demo():
    # Initialize the RAG system
    rag_system = BrockEventsRAG()
    
    # Custom CSS for better appearance
    custom_css = """
    .gr-button-primary {
        background-color: #8b0000 !important;
        border-color: #8b0000 !important;
    }
    """
    
    # Create the Gradio interface
    with gr.Blocks(css=custom_css) as demo:
        gr.Markdown("""
        # πŸŽ“ Brock University Events Assistant
        
        Ask me about upcoming events at Brock! I can help you discover:
        - Academic workshops
        - Student activities
        - Campus events
        - And more!
        """)
        
        chatbot = gr.Chatbot(
            label="Chat History",
            height=400,
            bubble_full_width=False,
        )
        
        with gr.Row():
            msg = gr.Textbox(
                label="Your Question",
                placeholder="e.g., What events are happening this week?",
                scale=4
            )
            submit = gr.Button("Ask", scale=1, variant="primary")
        
        with gr.Row():
            clear = gr.Button("Clear Chat")
            refresh = gr.Button("Refresh Events")
        
        # Event handlers
        def respond(message, history):
            bot_message = rag_system.generate_response(message, history)
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": bot_message})
            return "", history

        # In the create_demo function:
        chatbot = gr.Chatbot(
            label="Chat History",
            height=400,
            bubble_full_width=False,
            type="messages"  # Use new message format
        )
        
        def refresh_events():
            rag_system.update_database()
            return "Events database has been refreshed!"
        
        submit.click(respond, [msg, chatbot], [msg, chatbot])
        msg.submit(respond, [msg, chatbot], [msg, chatbot])
        clear.click(lambda: None, None, chatbot)
        refresh.click(refresh_events, None, msg)
        
        # Example questions
        gr.Examples(
            examples=[
                "What events are happening this week?",
                "Are there any workshops in the library?",
                "Tell me about upcoming career events",
                "What's happening in the MakerSpace?",
                "Any student club meetings soon?",
            ],
            inputs=msg
        )
        
        gr.Markdown("""
        ### Tips:
        - Ask about specific dates, locations, or event types
        - You can refresh the events database using the button above
        - Click on event links to get more details on ExperienceBU
        
        Data is refreshed automatically every 24 hours. Events shown are for the next 14 days.
        """)
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        server_name="0.0.0.0",  # Required for Spaces
        server_port=7860,      # Default port
        share=False,           # Don't create a public link
        max_threads=40         # Handle concurrent users
    )