Spaces:
Build error
Build error
created event_matcher.py
Browse filesFocused file to manage the app
- event_matcher.py +285 -0
event_matcher.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Dict, Tuple, Optional
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
+
import torch
|
| 5 |
+
import pytz
|
| 6 |
+
from fuzzywuzzy import fuzz
|
| 7 |
+
|
| 8 |
+
class Event:
|
| 9 |
+
"""Class to structure event data"""
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
title: str,
|
| 13 |
+
description: str,
|
| 14 |
+
start_time: datetime,
|
| 15 |
+
end_time: Optional[datetime],
|
| 16 |
+
location: str,
|
| 17 |
+
categories: List[str],
|
| 18 |
+
hosts: List[str],
|
| 19 |
+
link: str,
|
| 20 |
+
guid: str
|
| 21 |
+
):
|
| 22 |
+
self.title = title
|
| 23 |
+
self.description = description
|
| 24 |
+
self.start_time = start_time
|
| 25 |
+
self.end_time = end_time
|
| 26 |
+
self.location = location
|
| 27 |
+
self.categories = categories
|
| 28 |
+
self.hosts = hosts
|
| 29 |
+
self.link = link
|
| 30 |
+
self.guid = guid
|
| 31 |
+
|
| 32 |
+
class EnhancedEventMatcher:
|
| 33 |
+
def __init__(self):
|
| 34 |
+
"""Initialize the enhanced event matcher with T5"""
|
| 35 |
+
print("Initializing event matcher...")
|
| 36 |
+
|
| 37 |
+
# Initialize T5 for response enhancement
|
| 38 |
+
self.tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
| 39 |
+
self.t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
| 40 |
+
|
| 41 |
+
# Initialize pattern learning
|
| 42 |
+
self.known_categories = set()
|
| 43 |
+
self.known_hosts = set()
|
| 44 |
+
self.known_locations = set()
|
| 45 |
+
self.faculty_patterns = {}
|
| 46 |
+
self.category_patterns = {}
|
| 47 |
+
|
| 48 |
+
# Define static patterns
|
| 49 |
+
self.patterns = {
|
| 50 |
+
'faculty': {
|
| 51 |
+
'math': ['mathematics', 'math', 'stats', 'computer science'],
|
| 52 |
+
'humanities': ['humanities', 'language', 'literature'],
|
| 53 |
+
'business': ['goodman', 'business', 'accounting'],
|
| 54 |
+
'science': ['science', 'biology', 'chemistry', 'physics']
|
| 55 |
+
},
|
| 56 |
+
'event_type': {
|
| 57 |
+
'academic': ['lecture', 'seminar', 'workshop', 'conference'],
|
| 58 |
+
'social': ['meetup', 'social', 'gathering', 'networking'],
|
| 59 |
+
'career': ['career', 'job', 'employment', 'professional']
|
| 60 |
+
},
|
| 61 |
+
'location': {
|
| 62 |
+
'online': ['online', 'virtual', 'teams', 'zoom'],
|
| 63 |
+
'campus': ['room', 'hall', 'building', 'plaza'],
|
| 64 |
+
'library': ['library', 'learning commons', 'makerspace']
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
def convert_dict_to_event(self, event_dict: Dict) -> Event:
|
| 69 |
+
"""Convert a dictionary to an Event object"""
|
| 70 |
+
try:
|
| 71 |
+
return Event(
|
| 72 |
+
title=event_dict['title'],
|
| 73 |
+
description=event_dict.get('description', ''),
|
| 74 |
+
start_time=event_dict['start_time'],
|
| 75 |
+
end_time=event_dict.get('end_time'),
|
| 76 |
+
location=event_dict['location'],
|
| 77 |
+
categories=event_dict.get('categories', '').split(';'),
|
| 78 |
+
hosts=event_dict.get('hosts', '').split(';'),
|
| 79 |
+
link=event_dict['link'],
|
| 80 |
+
guid=event_dict['guid']
|
| 81 |
+
)
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Error converting dict to event: {e}")
|
| 84 |
+
raise
|
| 85 |
+
|
| 86 |
+
def learn_from_events(self, events: List[Event]) -> None:
|
| 87 |
+
"""Learn patterns from existing events"""
|
| 88 |
+
try:
|
| 89 |
+
for event in events:
|
| 90 |
+
# Update known sets
|
| 91 |
+
self.known_categories.update(event.categories)
|
| 92 |
+
self.known_hosts.update(event.hosts)
|
| 93 |
+
self.known_locations.add(event.location)
|
| 94 |
+
|
| 95 |
+
# Learn faculty associations
|
| 96 |
+
for host in event.hosts:
|
| 97 |
+
for category in event.categories:
|
| 98 |
+
if 'faculty' in host.lower():
|
| 99 |
+
key = (host, category)
|
| 100 |
+
self.faculty_patterns[key] = self.faculty_patterns.get(key, 0) + 1
|
| 101 |
+
|
| 102 |
+
# Learn category associations
|
| 103 |
+
for cat1 in event.categories:
|
| 104 |
+
for cat2 in event.categories:
|
| 105 |
+
if cat1 != cat2:
|
| 106 |
+
key = (cat1, cat2)
|
| 107 |
+
self.category_patterns[key] = self.category_patterns.get(key, 0) + 1
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"Error learning from events: {e}")
|
| 110 |
+
raise
|
| 111 |
+
|
| 112 |
+
def get_faculty_score(self, event: Event, query: str) -> float:
|
| 113 |
+
"""Score faculty relevance using learned patterns"""
|
| 114 |
+
try:
|
| 115 |
+
score = 0.0
|
| 116 |
+
query_lower = query.lower()
|
| 117 |
+
|
| 118 |
+
# Direct faculty mention check
|
| 119 |
+
for host in event.hosts:
|
| 120 |
+
if 'faculty' in host.lower():
|
| 121 |
+
ratio = fuzz.partial_ratio(query_lower, host.lower())
|
| 122 |
+
if ratio > 80:
|
| 123 |
+
score += 2.0 * (ratio / 100)
|
| 124 |
+
|
| 125 |
+
# Category association check
|
| 126 |
+
for category in event.categories:
|
| 127 |
+
for (host, cat), count in self.faculty_patterns.items():
|
| 128 |
+
if category == cat and fuzz.partial_ratio(query_lower, host.lower()) > 80:
|
| 129 |
+
score += 1.0 * (count / max(self.faculty_patterns.values(), default=1))
|
| 130 |
+
|
| 131 |
+
return score
|
| 132 |
+
except Exception as e:
|
| 133 |
+
print(f"Error calculating faculty score: {e}")
|
| 134 |
+
return 0.0
|
| 135 |
+
|
| 136 |
+
def get_category_score(self, event: Event, query_type: str) -> float:
|
| 137 |
+
"""Score category relevance using learned patterns"""
|
| 138 |
+
try:
|
| 139 |
+
if not query_type:
|
| 140 |
+
return 0.0
|
| 141 |
+
|
| 142 |
+
score = 0.0
|
| 143 |
+
for category in event.categories:
|
| 144 |
+
# Direct category match
|
| 145 |
+
ratio = fuzz.partial_ratio(query_type.lower(), category.lower())
|
| 146 |
+
if ratio > 80:
|
| 147 |
+
score += 1.5 * (ratio / 100)
|
| 148 |
+
|
| 149 |
+
# Associated categories
|
| 150 |
+
for (cat1, cat2), count in self.category_patterns.items():
|
| 151 |
+
if category == cat1 and fuzz.partial_ratio(query_type.lower(), cat2.lower()) > 80:
|
| 152 |
+
score += 0.5 * (count / max(self.category_patterns.values(), default=1))
|
| 153 |
+
|
| 154 |
+
return score
|
| 155 |
+
except Exception as e:
|
| 156 |
+
print(f"Error calculating category score: {e}")
|
| 157 |
+
return 0.0
|
| 158 |
+
|
| 159 |
+
def get_location_score(self, event: Event, query: str) -> float:
|
| 160 |
+
"""Score location relevance"""
|
| 161 |
+
try:
|
| 162 |
+
score = 0.0
|
| 163 |
+
location_lower = event.location.lower()
|
| 164 |
+
query_lower = query.lower()
|
| 165 |
+
|
| 166 |
+
# Check online/virtual events
|
| 167 |
+
if any(term in query_lower for term in self.patterns['location']['online']):
|
| 168 |
+
if any(term in location_lower for term in self.patterns['location']['online']):
|
| 169 |
+
score += 1.5
|
| 170 |
+
|
| 171 |
+
# Check campus/in-person events
|
| 172 |
+
if any(term in query_lower for term in ['in-person', 'campus', 'building']):
|
| 173 |
+
if any(term in location_lower for term in self.patterns['location']['campus']):
|
| 174 |
+
score += 1.5
|
| 175 |
+
|
| 176 |
+
# Check library events
|
| 177 |
+
if any(term in query_lower for term in self.patterns['location']['library']):
|
| 178 |
+
if any(term in location_lower for term in self.patterns['location']['library']):
|
| 179 |
+
score += 1.5
|
| 180 |
+
|
| 181 |
+
return score
|
| 182 |
+
except Exception as e:
|
| 183 |
+
print(f"Error calculating location score: {e}")
|
| 184 |
+
return 0.0
|
| 185 |
+
|
| 186 |
+
def generate_llm_response(self, query: str, events_text: str) -> str:
|
| 187 |
+
"""Generate response using T5"""
|
| 188 |
+
try:
|
| 189 |
+
# Create prompt for T5
|
| 190 |
+
prompt = f"summarize: Query: {query}\nAvailable Events:\n{events_text}"
|
| 191 |
+
|
| 192 |
+
# Generate response
|
| 193 |
+
inputs = self.tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
|
| 194 |
+
outputs = self.t5_model.generate(
|
| 195 |
+
inputs,
|
| 196 |
+
max_length=300,
|
| 197 |
+
num_beams=4,
|
| 198 |
+
temperature=0.7,
|
| 199 |
+
early_stopping=True
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 203 |
+
except Exception as e:
|
| 204 |
+
print(f"Error generating LLM response: {e}")
|
| 205 |
+
return "Here are some relevant events I found:"
|
| 206 |
+
|
| 207 |
+
def format_response(self, events: List[Tuple[Event, float]], llm_response: str) -> str:
|
| 208 |
+
"""Format the final response with event details"""
|
| 209 |
+
try:
|
| 210 |
+
response = f"{llm_response}\n\n"
|
| 211 |
+
|
| 212 |
+
for event, score in events:
|
| 213 |
+
# Determine location icon
|
| 214 |
+
location_icon = "π±" if any(term in event.location.lower()
|
| 215 |
+
for term in self.patterns['location']['online']) else "π"
|
| 216 |
+
|
| 217 |
+
# Format event details
|
| 218 |
+
response += f"""
|
| 219 |
+
**{event.title}** {'π' * int(min(score, 5))}
|
| 220 |
+
π
{event.start_time.strftime('%A, %B %d, %Y')} at {event.start_time.strftime('%I:%M %p')}
|
| 221 |
+
{location_icon} {event.location}
|
| 222 |
+
π₯ Hosted by: {', '.join(event.hosts)}
|
| 223 |
+
π·οΈ Categories: {', '.join(event.categories)}
|
| 224 |
+
π {event.link}
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
return response
|
| 228 |
+
except Exception as e:
|
| 229 |
+
print(f"Error formatting response: {e}")
|
| 230 |
+
return "Error formatting the response. Please try again."
|
| 231 |
+
|
| 232 |
+
def match_and_respond(self, events: List[Dict], query: str) -> str:
|
| 233 |
+
"""Main method to match events and generate response"""
|
| 234 |
+
try:
|
| 235 |
+
# Convert dictionary events to Event objects
|
| 236 |
+
event_objects = [self.convert_dict_to_event(event) for event in events]
|
| 237 |
+
|
| 238 |
+
# Learn patterns from events
|
| 239 |
+
self.learn_from_events(event_objects)
|
| 240 |
+
|
| 241 |
+
# Process query
|
| 242 |
+
query_lower = query.lower()
|
| 243 |
+
matched_events = []
|
| 244 |
+
|
| 245 |
+
# Score and match events
|
| 246 |
+
for event in event_objects:
|
| 247 |
+
faculty_score = self.get_faculty_score(event, query)
|
| 248 |
+
category_score = self.get_category_score(event, query_lower)
|
| 249 |
+
location_score = self.get_location_score(event, query)
|
| 250 |
+
|
| 251 |
+
total_score = (
|
| 252 |
+
faculty_score * 1.5 +
|
| 253 |
+
category_score * 1.2 +
|
| 254 |
+
location_score * 1.0
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if total_score > 0:
|
| 258 |
+
matched_events.append((event, total_score))
|
| 259 |
+
|
| 260 |
+
# Sort and get top matches
|
| 261 |
+
matched_events.sort(key=lambda x: x[1], reverse=True)
|
| 262 |
+
top_matches = matched_events[:3]
|
| 263 |
+
|
| 264 |
+
if not top_matches:
|
| 265 |
+
return "I couldn't find any events matching your query. Try asking in a different way!"
|
| 266 |
+
|
| 267 |
+
# Format events for LLM
|
| 268 |
+
events_text = ""
|
| 269 |
+
for event, score in top_matches:
|
| 270 |
+
events_text += f"""
|
| 271 |
+
Event: {event.title}
|
| 272 |
+
Date: {event.start_time.strftime('%A, %B %d, %Y')}
|
| 273 |
+
Time: {event.start_time.strftime('%I:%M %p')}
|
| 274 |
+
Location: {event.location}
|
| 275 |
+
Categories: {', '.join(event.categories)}
|
| 276 |
+
Score: {score:.2f}
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
# Generate LLM response and format final response
|
| 280 |
+
llm_response = self.generate_llm_response(query, events_text)
|
| 281 |
+
return self.format_response(top_matches, llm_response)
|
| 282 |
+
|
| 283 |
+
except Exception as e:
|
| 284 |
+
print(f"Error in match_and_respond: {e}")
|
| 285 |
+
return "I encountered an error processing your query. Please try again!"
|