Spaces:
Paused
Paused
| # | |
| # The Python Imaging Library | |
| # $Id$ | |
| # | |
| # a simple math add-on for the Python Imaging Library | |
| # | |
| # History: | |
| # 1999-02-15 fl Original PIL Plus release | |
| # 2005-05-05 fl Simplified and cleaned up for PIL 1.1.6 | |
| # 2005-09-12 fl Fixed int() and float() for Python 2.4.1 | |
| # | |
| # Copyright (c) 1999-2005 by Secret Labs AB | |
| # Copyright (c) 2005 by Fredrik Lundh | |
| # | |
| # See the README file for information on usage and redistribution. | |
| # | |
| from __future__ import annotations | |
| import builtins | |
| from types import CodeType | |
| from typing import Any, Callable | |
| from . import Image, _imagingmath | |
| from ._deprecate import deprecate | |
| class _Operand: | |
| """Wraps an image operand, providing standard operators""" | |
| def __init__(self, im: Image.Image): | |
| self.im = im | |
| def __fixup(self, im1: _Operand | float) -> Image.Image: | |
| # convert image to suitable mode | |
| if isinstance(im1, _Operand): | |
| # argument was an image. | |
| if im1.im.mode in ("1", "L"): | |
| return im1.im.convert("I") | |
| elif im1.im.mode in ("I", "F"): | |
| return im1.im | |
| else: | |
| msg = f"unsupported mode: {im1.im.mode}" | |
| raise ValueError(msg) | |
| else: | |
| # argument was a constant | |
| if isinstance(im1, (int, float)) and self.im.mode in ("1", "L", "I"): | |
| return Image.new("I", self.im.size, im1) | |
| else: | |
| return Image.new("F", self.im.size, im1) | |
| def apply( | |
| self, | |
| op: str, | |
| im1: _Operand | float, | |
| im2: _Operand | float | None = None, | |
| mode: str | None = None, | |
| ) -> _Operand: | |
| im_1 = self.__fixup(im1) | |
| if im2 is None: | |
| # unary operation | |
| out = Image.new(mode or im_1.mode, im_1.size, None) | |
| im_1.load() | |
| try: | |
| op = getattr(_imagingmath, op + "_" + im_1.mode) | |
| except AttributeError as e: | |
| msg = f"bad operand type for '{op}'" | |
| raise TypeError(msg) from e | |
| _imagingmath.unop(op, out.im.id, im_1.im.id) | |
| else: | |
| # binary operation | |
| im_2 = self.__fixup(im2) | |
| if im_1.mode != im_2.mode: | |
| # convert both arguments to floating point | |
| if im_1.mode != "F": | |
| im_1 = im_1.convert("F") | |
| if im_2.mode != "F": | |
| im_2 = im_2.convert("F") | |
| if im_1.size != im_2.size: | |
| # crop both arguments to a common size | |
| size = ( | |
| min(im_1.size[0], im_2.size[0]), | |
| min(im_1.size[1], im_2.size[1]), | |
| ) | |
| if im_1.size != size: | |
| im_1 = im_1.crop((0, 0) + size) | |
| if im_2.size != size: | |
| im_2 = im_2.crop((0, 0) + size) | |
| out = Image.new(mode or im_1.mode, im_1.size, None) | |
| im_1.load() | |
| im_2.load() | |
| try: | |
| op = getattr(_imagingmath, op + "_" + im_1.mode) | |
| except AttributeError as e: | |
| msg = f"bad operand type for '{op}'" | |
| raise TypeError(msg) from e | |
| _imagingmath.binop(op, out.im.id, im_1.im.id, im_2.im.id) | |
| return _Operand(out) | |
| # unary operators | |
| def __bool__(self) -> bool: | |
| # an image is "true" if it contains at least one non-zero pixel | |
| return self.im.getbbox() is not None | |
| def __abs__(self) -> _Operand: | |
| return self.apply("abs", self) | |
| def __pos__(self) -> _Operand: | |
| return self | |
| def __neg__(self) -> _Operand: | |
| return self.apply("neg", self) | |
| # binary operators | |
| def __add__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("add", self, other) | |
| def __radd__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("add", other, self) | |
| def __sub__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("sub", self, other) | |
| def __rsub__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("sub", other, self) | |
| def __mul__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("mul", self, other) | |
| def __rmul__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("mul", other, self) | |
| def __truediv__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("div", self, other) | |
| def __rtruediv__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("div", other, self) | |
| def __mod__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("mod", self, other) | |
| def __rmod__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("mod", other, self) | |
| def __pow__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("pow", self, other) | |
| def __rpow__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("pow", other, self) | |
| # bitwise | |
| def __invert__(self) -> _Operand: | |
| return self.apply("invert", self) | |
| def __and__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("and", self, other) | |
| def __rand__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("and", other, self) | |
| def __or__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("or", self, other) | |
| def __ror__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("or", other, self) | |
| def __xor__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("xor", self, other) | |
| def __rxor__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("xor", other, self) | |
| def __lshift__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("lshift", self, other) | |
| def __rshift__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("rshift", self, other) | |
| # logical | |
| def __eq__(self, other): | |
| return self.apply("eq", self, other) | |
| def __ne__(self, other): | |
| return self.apply("ne", self, other) | |
| def __lt__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("lt", self, other) | |
| def __le__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("le", self, other) | |
| def __gt__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("gt", self, other) | |
| def __ge__(self, other: _Operand | float) -> _Operand: | |
| return self.apply("ge", self, other) | |
| # conversions | |
| def imagemath_int(self: _Operand) -> _Operand: | |
| return _Operand(self.im.convert("I")) | |
| def imagemath_float(self: _Operand) -> _Operand: | |
| return _Operand(self.im.convert("F")) | |
| # logical | |
| def imagemath_equal(self: _Operand, other: _Operand | float | None) -> _Operand: | |
| return self.apply("eq", self, other, mode="I") | |
| def imagemath_notequal(self: _Operand, other: _Operand | float | None) -> _Operand: | |
| return self.apply("ne", self, other, mode="I") | |
| def imagemath_min(self: _Operand, other: _Operand | float | None) -> _Operand: | |
| return self.apply("min", self, other) | |
| def imagemath_max(self: _Operand, other: _Operand | float | None) -> _Operand: | |
| return self.apply("max", self, other) | |
| def imagemath_convert(self: _Operand, mode: str) -> _Operand: | |
| return _Operand(self.im.convert(mode)) | |
| ops = { | |
| "int": imagemath_int, | |
| "float": imagemath_float, | |
| "equal": imagemath_equal, | |
| "notequal": imagemath_notequal, | |
| "min": imagemath_min, | |
| "max": imagemath_max, | |
| "convert": imagemath_convert, | |
| } | |
| def lambda_eval( | |
| expression: Callable[[dict[str, Any]], Any], | |
| options: dict[str, Any] = {}, | |
| **kw: Any, | |
| ) -> Any: | |
| """ | |
| Returns the result of an image function. | |
| :py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band | |
| images, use the :py:meth:`~PIL.Image.Image.split` method or | |
| :py:func:`~PIL.Image.merge` function. | |
| :param expression: A function that receives a dictionary. | |
| :param options: Values to add to the function's dictionary. You | |
| can either use a dictionary, or one or more keyword | |
| arguments. | |
| :return: The expression result. This is usually an image object, but can | |
| also be an integer, a floating point value, or a pixel tuple, | |
| depending on the expression. | |
| """ | |
| args: dict[str, Any] = ops.copy() | |
| args.update(options) | |
| args.update(kw) | |
| for k, v in args.items(): | |
| if hasattr(v, "im"): | |
| args[k] = _Operand(v) | |
| out = expression(args) | |
| try: | |
| return out.im | |
| except AttributeError: | |
| return out | |
| def unsafe_eval( | |
| expression: str, | |
| options: dict[str, Any] = {}, | |
| **kw: Any, | |
| ) -> Any: | |
| """ | |
| Evaluates an image expression. This uses Python's ``eval()`` function to process | |
| the expression string, and carries the security risks of doing so. It is not | |
| recommended to process expressions without considering this. | |
| :py:meth:`~lambda_eval` is a more secure alternative. | |
| :py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band | |
| images, use the :py:meth:`~PIL.Image.Image.split` method or | |
| :py:func:`~PIL.Image.merge` function. | |
| :param expression: A string containing a Python-style expression. | |
| :param options: Values to add to the evaluation context. You | |
| can either use a dictionary, or one or more keyword | |
| arguments. | |
| :return: The evaluated expression. This is usually an image object, but can | |
| also be an integer, a floating point value, or a pixel tuple, | |
| depending on the expression. | |
| """ | |
| # build execution namespace | |
| args: dict[str, Any] = ops.copy() | |
| for k in list(options.keys()) + list(kw.keys()): | |
| if "__" in k or hasattr(builtins, k): | |
| msg = f"'{k}' not allowed" | |
| raise ValueError(msg) | |
| args.update(options) | |
| args.update(kw) | |
| for k, v in args.items(): | |
| if hasattr(v, "im"): | |
| args[k] = _Operand(v) | |
| compiled_code = compile(expression, "<string>", "eval") | |
| def scan(code: CodeType) -> None: | |
| for const in code.co_consts: | |
| if type(const) is type(compiled_code): | |
| scan(const) | |
| for name in code.co_names: | |
| if name not in args and name != "abs": | |
| msg = f"'{name}' not allowed" | |
| raise ValueError(msg) | |
| scan(compiled_code) | |
| out = builtins.eval(expression, {"__builtins": {"abs": abs}}, args) | |
| try: | |
| return out.im | |
| except AttributeError: | |
| return out | |
| def eval( | |
| expression: str, | |
| _dict: dict[str, Any] = {}, | |
| **kw: Any, | |
| ) -> Any: | |
| """ | |
| Evaluates an image expression. | |
| Deprecated. Use lambda_eval() or unsafe_eval() instead. | |
| :param expression: A string containing a Python-style expression. | |
| :param _dict: Values to add to the evaluation context. You | |
| can either use a dictionary, or one or more keyword | |
| arguments. | |
| :return: The evaluated expression. This is usually an image object, but can | |
| also be an integer, a floating point value, or a pixel tuple, | |
| depending on the expression. | |
| .. deprecated:: 10.3.0 | |
| """ | |
| deprecate( | |
| "ImageMath.eval", | |
| 12, | |
| "ImageMath.lambda_eval or ImageMath.unsafe_eval", | |
| ) | |
| return unsafe_eval(expression, _dict, **kw) | |