Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,9 +10,12 @@ MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
|
|
| 10 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
|
| 12 |
# --- Suppress specific warnings ---
|
|
|
|
| 13 |
warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
|
|
|
|
| 14 |
warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
|
| 15 |
|
|
|
|
| 16 |
# --- Load Model and Processor (Load once at startup) ---
|
| 17 |
print(f"Using device: {DEVICE}")
|
| 18 |
print(f"Loading processor from: {MODEL_IDENTIFIER}")
|
|
@@ -25,184 +28,93 @@ try:
|
|
| 25 |
print("Model and processor loaded successfully.")
|
| 26 |
except Exception as e:
|
| 27 |
print(f"FATAL: Error loading model or processor: {e}")
|
|
|
|
| 28 |
raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
|
| 29 |
|
| 30 |
# --- Prediction Function ---
|
| 31 |
def classify_image(image_pil):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if image_pil is None:
|
|
|
|
| 33 |
print("Warning: No image provided.")
|
| 34 |
-
return {}
|
| 35 |
|
| 36 |
print("Processing image...")
|
| 37 |
try:
|
|
|
|
| 38 |
image = image_pil.convert("RGB")
|
|
|
|
|
|
|
| 39 |
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
| 40 |
|
|
|
|
| 41 |
print("Running inference...")
|
| 42 |
with torch.no_grad():
|
| 43 |
outputs = model(**inputs)
|
| 44 |
logits = outputs.logits
|
| 45 |
|
| 46 |
-
probabilities
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
results = {}
|
| 48 |
for i, prob in enumerate(probabilities):
|
| 49 |
label = model.config.id2label[i]
|
| 50 |
-
results[label] =
|
| 51 |
|
| 52 |
print(f"Prediction results: {results}")
|
| 53 |
return results
|
|
|
|
| 54 |
except Exception as e:
|
| 55 |
print(f"Error during prediction: {e}")
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
# ---
|
|
|
|
|
|
|
|
|
|
| 59 |
example_dir = "examples"
|
| 60 |
example_images = []
|
| 61 |
-
if os.path.exists(example_dir)
|
| 62 |
for img_name in os.listdir(example_dir):
|
| 63 |
if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
print(f"Found examples: {example_images}")
|
| 67 |
-
else:
|
| 68 |
-
print("No valid image files found in 'examples' directory.")
|
| 69 |
else:
|
| 70 |
-
print("No 'examples' directory found
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
font-weight: bold;
|
| 81 |
-
font-size: 2.5em;
|
| 82 |
-
margin-bottom: 5px;
|
| 83 |
-
/* color removed - let theme handle */
|
| 84 |
-
}
|
| 85 |
-
|
| 86 |
-
/* Style the description */
|
| 87 |
-
#app-description {
|
| 88 |
-
text-align: center;
|
| 89 |
-
font-size: 1.1em;
|
| 90 |
-
margin-bottom: 25px;
|
| 91 |
-
/* color removed - let theme handle */
|
| 92 |
-
}
|
| 93 |
-
#app-description code { /* Style model name - theme might handle this, but can force */
|
| 94 |
-
font-weight: bold;
|
| 95 |
-
background-color: rgba(255, 255, 255, 0.1); /* Slightly lighter background for code */
|
| 96 |
-
padding: 2px 5px;
|
| 97 |
-
border-radius: 4px;
|
| 98 |
-
color: #c5f7dc; /* Light green text for code block */
|
| 99 |
-
}
|
| 100 |
-
#app-description strong { /* Style device name */
|
| 101 |
-
color: #2dd4bf; /* Brighter teal/emerald for dark theme */
|
| 102 |
-
font-weight: bold;
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
/* Style the results heading */
|
| 106 |
-
#results-heading {
|
| 107 |
-
text-align: center;
|
| 108 |
-
font-size: 1.2em;
|
| 109 |
-
margin-bottom: 10px;
|
| 110 |
-
/* color removed - let theme handle */
|
| 111 |
-
}
|
| 112 |
-
|
| 113 |
-
/* Add some definition to input/output columns if needed */
|
| 114 |
-
#input-column, #output-column {
|
| 115 |
-
border: 1px solid #4b5563; /* Darker border for dark theme */
|
| 116 |
-
border-radius: 12px;
|
| 117 |
-
padding: 20px;
|
| 118 |
-
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); /* Subtle shadow, works on dark too */
|
| 119 |
-
/* background-color removed - let theme handle */
|
| 120 |
-
}
|
| 121 |
-
|
| 122 |
-
/* Ensure label text inside columns is readable */
|
| 123 |
-
#prediction-label .label-name { font-weight: bold; font-size: 1.1em; }
|
| 124 |
-
#prediction-label .confidence { font-size: 1em; }
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
/* Footer styling */
|
| 128 |
-
#app-footer {
|
| 129 |
-
margin-top: 40px;
|
| 130 |
-
padding-top: 20px;
|
| 131 |
-
border-top: 1px solid #374151; /* Darker border for footer */
|
| 132 |
-
text-align: center;
|
| 133 |
-
font-size: 0.9em;
|
| 134 |
-
/* color removed - let theme handle */
|
| 135 |
-
}
|
| 136 |
-
#app-footer a {
|
| 137 |
-
color: #60a5fa; /* Lighter blue for links */
|
| 138 |
-
text-decoration: none;
|
| 139 |
-
}
|
| 140 |
-
#app-footer a:hover {
|
| 141 |
-
text-decoration: underline;
|
| 142 |
-
}
|
| 143 |
-
"""
|
| 144 |
-
|
| 145 |
-
# --- Gradio Interface using Blocks and Theme ---
|
| 146 |
-
# Use the theme string identifier for the dark mode variant
|
| 147 |
-
# Other options: "default/dark", "monochrome/dark", "glass/dark"
|
| 148 |
-
with gr.Blocks(theme="soft/dark", css=css) as iface: # <<< CHANGE IS HERE
|
| 149 |
-
# Title and Description
|
| 150 |
-
gr.Markdown("# AI vs Human Image Detector", elem_id="app-title")
|
| 151 |
-
gr.Markdown(
|
| 152 |
f"Upload an image to classify if it was likely generated by AI or created by a human. "
|
| 153 |
-
f"Uses the `{MODEL_IDENTIFIER}` model. Running on **{str(DEVICE).upper()}**."
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
submit_button = gr.Button("🔍 Classify Image", variant="primary")
|
| 167 |
-
|
| 168 |
-
with gr.Column(scale=1, min_width=300, elem_id="output-column"):
|
| 169 |
-
gr.Markdown("📊 **Prediction Results**", elem_id="results-heading")
|
| 170 |
-
result_output = gr.Label(
|
| 171 |
-
num_top_classes=2,
|
| 172 |
-
label="Classification",
|
| 173 |
-
elem_id="prediction-label"
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
# Examples Section
|
| 177 |
-
if example_images:
|
| 178 |
-
gr.Examples(
|
| 179 |
-
examples=example_images,
|
| 180 |
-
inputs=image_input,
|
| 181 |
-
outputs=result_output,
|
| 182 |
-
fn=classify_image,
|
| 183 |
-
cache_examples=True,
|
| 184 |
-
label="✨ Click an Example to Try!"
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
# Footer / Article section
|
| 188 |
-
gr.Markdown(f"""
|
| 189 |
-
---
|
| 190 |
-
**How it Works:**
|
| 191 |
-
This application uses a fine-tuned [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) vision model
|
| 192 |
-
specifically trained to differentiate between images generated by Artificial Intelligence and those created by humans.
|
| 193 |
-
|
| 194 |
-
**Model:**
|
| 195 |
-
* You can find the model card here: <a href='https://huggingface.co/{MODEL_IDENTIFIER}' target='_blank'>{MODEL_IDENTIFIER}</a>
|
| 196 |
-
|
| 197 |
-
**Training Code:**
|
| 198 |
-
Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/).
|
| 199 |
-
""",
|
| 200 |
-
elem_id="app-footer"
|
| 201 |
-
)
|
| 202 |
-
|
| 203 |
-
# Connect events
|
| 204 |
-
submit_button.click(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_button")
|
| 205 |
-
image_input.change(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_change")
|
| 206 |
|
| 207 |
# --- Launch the App ---
|
| 208 |
if __name__ == "__main__":
|
|
|
|
| 10 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
|
| 12 |
# --- Suppress specific warnings ---
|
| 13 |
+
# Suppress the specific PIL warning about potential decompression bombs
|
| 14 |
warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
|
| 15 |
+
# Suppress transformers warning about loading weights without specifying revision
|
| 16 |
warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
|
| 17 |
|
| 18 |
+
|
| 19 |
# --- Load Model and Processor (Load once at startup) ---
|
| 20 |
print(f"Using device: {DEVICE}")
|
| 21 |
print(f"Loading processor from: {MODEL_IDENTIFIER}")
|
|
|
|
| 28 |
print("Model and processor loaded successfully.")
|
| 29 |
except Exception as e:
|
| 30 |
print(f"FATAL: Error loading model or processor: {e}")
|
| 31 |
+
# If the model fails to load, we raise an exception to stop the app
|
| 32 |
raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
|
| 33 |
|
| 34 |
# --- Prediction Function ---
|
| 35 |
def classify_image(image_pil):
|
| 36 |
+
"""
|
| 37 |
+
Classifies an image as AI-generated or Human-made.
|
| 38 |
+
Args:
|
| 39 |
+
image_pil (PIL.Image.Image): Input image in PIL format.
|
| 40 |
+
Returns:
|
| 41 |
+
dict: A dictionary mapping class labels ('ai', 'human') to their
|
| 42 |
+
confidence scores. Returns an empty dict if input is None.
|
| 43 |
+
"""
|
| 44 |
if image_pil is None:
|
| 45 |
+
# Handle case where the user clears the image input
|
| 46 |
print("Warning: No image provided.")
|
| 47 |
+
return {} # Return empty dict, Gradio Label handles this
|
| 48 |
|
| 49 |
print("Processing image...")
|
| 50 |
try:
|
| 51 |
+
# Ensure image is RGB
|
| 52 |
image = image_pil.convert("RGB")
|
| 53 |
+
|
| 54 |
+
# Preprocess using the loaded processor
|
| 55 |
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
| 56 |
|
| 57 |
+
# Perform inference
|
| 58 |
print("Running inference...")
|
| 59 |
with torch.no_grad():
|
| 60 |
outputs = model(**inputs)
|
| 61 |
logits = outputs.logits
|
| 62 |
|
| 63 |
+
# Get probabilities using softmax
|
| 64 |
+
# outputs.logits is shape [1, num_labels], softmax over the last dim
|
| 65 |
+
probabilities = torch.softmax(logits, dim=-1)[0] # Get probabilities for the first (and only) image
|
| 66 |
+
|
| 67 |
+
# Create a dictionary of label -> score
|
| 68 |
results = {}
|
| 69 |
for i, prob in enumerate(probabilities):
|
| 70 |
label = model.config.id2label[i]
|
| 71 |
+
results[label] = prob.item() # Use .item() to get Python float
|
| 72 |
|
| 73 |
print(f"Prediction results: {results}")
|
| 74 |
return results
|
| 75 |
+
|
| 76 |
except Exception as e:
|
| 77 |
print(f"Error during prediction: {e}")
|
| 78 |
+
# Optionally raise a Gradio error to show it in the UI
|
| 79 |
+
# raise gr.Error(f"Error processing image: {e}")
|
| 80 |
+
return {"Error": f"Processing failed: {e}"} # Or return an error message
|
| 81 |
|
| 82 |
+
# --- Gradio Interface Definition ---
|
| 83 |
+
|
| 84 |
+
# Define Example Images (Optional, but recommended)
|
| 85 |
+
# Create an 'examples' folder in your Space repo and put images there
|
| 86 |
example_dir = "examples"
|
| 87 |
example_images = []
|
| 88 |
+
if os.path.exists(example_dir):
|
| 89 |
for img_name in os.listdir(example_dir):
|
| 90 |
if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
|
| 91 |
+
example_images.append(os.path.join(example_dir, img_name))
|
| 92 |
+
print(f"Found examples: {example_images}")
|
|
|
|
|
|
|
|
|
|
| 93 |
else:
|
| 94 |
+
print("No 'examples' directory found. Examples will not be shown.")
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# Define the Gradio interface
|
| 98 |
+
iface = gr.Interface(
|
| 99 |
+
fn=classify_image,
|
| 100 |
+
inputs=gr.Image(type="pil", label="Upload Image", sources=["upload", "webcam", "clipboard"]), # Use PIL format as input
|
| 101 |
+
outputs=gr.Label(num_top_classes=2, label="Prediction Results"), # Use gr.Label for classification output
|
| 102 |
+
title="AI vs Human Image Detector",
|
| 103 |
+
description=(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
f"Upload an image to classify if it was likely generated by AI or created by a human. "
|
| 105 |
+
f"Uses the `{MODEL_IDENTIFIER}` model on Hugging Face. Running on **{str(DEVICE).upper()}**."
|
| 106 |
+
),
|
| 107 |
+
article=(
|
| 108 |
+
"<div>"
|
| 109 |
+
"<p>This tool uses a SigLIP model fine-tuned for distinguishing between AI-generated and human-made images.</p>"
|
| 110 |
+
f"<p>Model Card: <a href='https://huggingface.co/{MODEL_IDENTIFIER}' target='_blank'>{MODEL_IDENTIFIER}</a></p>"
|
| 111 |
+
Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/).
|
| 112 |
+
"</div>"
|
| 113 |
+
),
|
| 114 |
+
examples=example_images if example_images else None, # Only add examples if found
|
| 115 |
+
cache_examples= True if example_images else False, # Cache results for examples if they exist
|
| 116 |
+
allow_flagging="never" # Or "auto" if you want users to flag issues
|
| 117 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# --- Launch the App ---
|
| 120 |
if __name__ == "__main__":
|