Spaces:
Running
Running
Merge branch 'feat/add-Flow-Judge-v0.1' into pr/8
Browse files- app.py +11 -1
- data/models.jsonl +2 -1
- gen_api_answer.py +99 -18
- prompts.py +54 -0
app.py
CHANGED
|
@@ -14,7 +14,8 @@ from gen_api_answer import (
|
|
| 14 |
get_model_response,
|
| 15 |
parse_model_response,
|
| 16 |
prometheus_parse_model_response,
|
| 17 |
-
atla_parse_model_response
|
|
|
|
| 18 |
)
|
| 19 |
|
| 20 |
from random_sample_generation import (
|
|
@@ -750,6 +751,9 @@ with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
|
|
| 750 |
is_prometheus_b = (model_data.get(model_b)['organization'] == 'Prometheus')
|
| 751 |
is_atla_a = (model_data.get(model_a)['organization'] == 'Atla')
|
| 752 |
is_atla_b = (model_data.get(model_b)['organization'] == 'Atla')
|
|
|
|
|
|
|
|
|
|
| 753 |
|
| 754 |
if is_prometheus_a:
|
| 755 |
score_a_val, critique_a_val = prometheus_parse_model_response(response_a)
|
|
@@ -757,6 +761,9 @@ with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
|
|
| 757 |
elif is_atla_a:
|
| 758 |
score_a_val, critique_a_val = atla_parse_model_response(response_a)
|
| 759 |
score_a_val = f"{score_a_val} / 5"
|
|
|
|
|
|
|
|
|
|
| 760 |
else:
|
| 761 |
score_a_val, critique_a_val = parse_model_response(response_a)
|
| 762 |
score_a_val = f"{score_a_val} / 5"
|
|
@@ -767,6 +774,9 @@ with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
|
|
| 767 |
elif is_atla_b:
|
| 768 |
score_b_val, critique_b_val = atla_parse_model_response(response_b)
|
| 769 |
score_b_val = f"{score_b_val} / 5"
|
|
|
|
|
|
|
|
|
|
| 770 |
else:
|
| 771 |
score_b_val, critique_b_val = parse_model_response(response_b)
|
| 772 |
score_b_val = f"{score_b_val} / 5"
|
|
|
|
| 14 |
get_model_response,
|
| 15 |
parse_model_response,
|
| 16 |
prometheus_parse_model_response,
|
| 17 |
+
atla_parse_model_response,
|
| 18 |
+
flow_judge_parse_model_response,
|
| 19 |
)
|
| 20 |
|
| 21 |
from random_sample_generation import (
|
|
|
|
| 751 |
is_prometheus_b = (model_data.get(model_b)['organization'] == 'Prometheus')
|
| 752 |
is_atla_a = (model_data.get(model_a)['organization'] == 'Atla')
|
| 753 |
is_atla_b = (model_data.get(model_b)['organization'] == 'Atla')
|
| 754 |
+
|
| 755 |
+
is_flow_judge_a = (model_data.get(model_a)['organization'] == 'Flow AI')
|
| 756 |
+
is_flow_judge_b = (model_data.get(model_b)['organization'] == 'Flow AI')
|
| 757 |
|
| 758 |
if is_prometheus_a:
|
| 759 |
score_a_val, critique_a_val = prometheus_parse_model_response(response_a)
|
|
|
|
| 761 |
elif is_atla_a:
|
| 762 |
score_a_val, critique_a_val = atla_parse_model_response(response_a)
|
| 763 |
score_a_val = f"{score_a_val} / 5"
|
| 764 |
+
elif is_flow_judge_a:
|
| 765 |
+
score_a_val, critique_a_val = flow_judge_parse_model_response(response_a)
|
| 766 |
+
score_a_val = f"{score_a_val} / 5"
|
| 767 |
else:
|
| 768 |
score_a_val, critique_a_val = parse_model_response(response_a)
|
| 769 |
score_a_val = f"{score_a_val} / 5"
|
|
|
|
| 774 |
elif is_atla_b:
|
| 775 |
score_b_val, critique_b_val = atla_parse_model_response(response_b)
|
| 776 |
score_b_val = f"{score_b_val} / 5"
|
| 777 |
+
elif is_flow_judge_b:
|
| 778 |
+
score_b_val, critique_b_val = flow_judge_parse_model_response(response_b)
|
| 779 |
+
score_b_val = f"{score_b_val} / 5"
|
| 780 |
else:
|
| 781 |
score_b_val, critique_b_val = parse_model_response(response_b)
|
| 782 |
score_b_val = f"{score_b_val} / 5"
|
data/models.jsonl
CHANGED
|
@@ -21,4 +21,5 @@
|
|
| 21 |
{"name": "Command-R Plus", "organization": "Cohere", "license": "Proprietary", "api_model": "command-r-plus", "active": true}
|
| 22 |
{"name": "Atla-8B-preview-2024-01-08", "organization": "Atla", "license": "Open Source", "api_model": "Atla-8B-preview-2024-01-08", "active": true}
|
| 23 |
{"name": "Meta Llama 3.3 70B Instruct Turbo", "organization": "Meta", "license": "Open Source", "api_model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", "active": true}
|
| 24 |
-
{"name": "QwQ 32B Preview", "organization": "Qwen", "license": "Open Source", "api_model": "Qwen/QwQ-32B-Preview", "active": true}
|
|
|
|
|
|
| 21 |
{"name": "Command-R Plus", "organization": "Cohere", "license": "Proprietary", "api_model": "command-r-plus", "active": true}
|
| 22 |
{"name": "Atla-8B-preview-2024-01-08", "organization": "Atla", "license": "Open Source", "api_model": "Atla-8B-preview-2024-01-08", "active": true}
|
| 23 |
{"name": "Meta Llama 3.3 70B Instruct Turbo", "organization": "Meta", "license": "Open Source", "api_model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", "active": true}
|
| 24 |
+
{"name": "QwQ 32B Preview", "organization": "Qwen", "license": "Open Source", "api_model": "Qwen/QwQ-32B-Preview", "active": true}
|
| 25 |
+
{"name": "Flow-Judge-v0.1", "organization": "Flow AI", "license": "Open Source", "api_model": "Flow-Judge-v0.1-4.65bpw-exl2"}
|
gen_api_answer.py
CHANGED
|
@@ -12,6 +12,7 @@ from prompts import (
|
|
| 12 |
PROMETHEUS_PROMPT_WITH_REFERENCE,
|
| 13 |
ATLA_PROMPT,
|
| 14 |
ATLA_PROMPT_WITH_REFERENCE,
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# Initialize clients
|
|
@@ -22,6 +23,8 @@ hf_api_key = os.getenv("HF_API_KEY")
|
|
| 22 |
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 27 |
"""Get response from OpenAI API"""
|
|
@@ -145,6 +148,30 @@ def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, m
|
|
| 145 |
return str(content_items) # Fallback if it's not a list
|
| 146 |
except Exception as e:
|
| 147 |
return f"Error with Cohere model {model_name}: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
def get_model_response(
|
| 150 |
model_name,
|
|
@@ -164,38 +191,64 @@ def get_model_response(
|
|
| 164 |
# Determine if model is Prometheus or Atla
|
| 165 |
is_prometheus = (organization == "Prometheus")
|
| 166 |
is_atla = (organization == "Atla")
|
| 167 |
-
|
| 168 |
# For non-Prometheus/Atla models, use the Judge system prompt
|
| 169 |
-
system_prompt = None if (is_prometheus or is_atla) else JUDGE_SYSTEM_PROMPT
|
| 170 |
|
| 171 |
# Select the appropriate base prompt
|
| 172 |
if is_atla:
|
| 173 |
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
| 174 |
-
elif
|
| 175 |
-
base_prompt =
|
| 176 |
else:
|
| 177 |
-
base_prompt = PROMETHEUS_PROMPT
|
| 178 |
|
| 179 |
# For non-Prometheus/non-Atla models, replace the specific instruction
|
| 180 |
-
if not (is_prometheus or is_atla):
|
| 181 |
base_prompt = base_prompt.replace(
|
| 182 |
'3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"',
|
| 183 |
'3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.'
|
| 184 |
)
|
| 185 |
|
| 186 |
try:
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
except KeyError as e:
|
| 200 |
return f"Error formatting prompt: Missing required field {str(e)}"
|
| 201 |
|
|
@@ -220,6 +273,10 @@ def get_model_response(
|
|
| 220 |
return get_cohere_response(
|
| 221 |
api_model, final_prompt, system_prompt, max_tokens, temperature
|
| 222 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
else:
|
| 224 |
# All other organizations use Together API
|
| 225 |
return get_together_response(
|
|
@@ -306,7 +363,31 @@ def prometheus_parse_model_response(output):
|
|
| 306 |
except Exception as e:
|
| 307 |
print(f"Failed to parse response: {str(e)}")
|
| 308 |
return "Error", f"Exception during parsing: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
def atla_parse_model_response(output):
|
| 311 |
"""Parse response from ATLA model"""
|
| 312 |
try:
|
|
|
|
| 12 |
PROMETHEUS_PROMPT_WITH_REFERENCE,
|
| 13 |
ATLA_PROMPT,
|
| 14 |
ATLA_PROMPT_WITH_REFERENCE,
|
| 15 |
+
FLOW_JUDGE_PROMPT
|
| 16 |
)
|
| 17 |
|
| 18 |
# Initialize clients
|
|
|
|
| 23 |
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
|
| 24 |
|
| 25 |
|
| 26 |
+
flow_judge_api_key = os.getenv("FLOW_JUDGE_API_KEY")
|
| 27 |
+
|
| 28 |
|
| 29 |
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 30 |
"""Get response from OpenAI API"""
|
|
|
|
| 148 |
return str(content_items) # Fallback if it's not a list
|
| 149 |
except Exception as e:
|
| 150 |
return f"Error with Cohere model {model_name}: {str(e)}"
|
| 151 |
+
|
| 152 |
+
def get_flow_judge_response(model_name, prompt, max_tokens=500, temperature=0.1, top_p=0.95) -> str:
|
| 153 |
+
"""Get response from Flow Judge"""
|
| 154 |
+
try:
|
| 155 |
+
response = requests.post(
|
| 156 |
+
"https://tsukuyomi.tailfa581.ts.net/v1/chat/completions",
|
| 157 |
+
headers={
|
| 158 |
+
"Content-Type": "application/json",
|
| 159 |
+
"Authorization": f"Bearer {flow_judge_api_key}"
|
| 160 |
+
},
|
| 161 |
+
json={
|
| 162 |
+
"model": model_name,
|
| 163 |
+
"messages": [
|
| 164 |
+
{"role": "user", "content": prompt}
|
| 165 |
+
],
|
| 166 |
+
"max_tokens": max_tokens,
|
| 167 |
+
"temperature": temperature,
|
| 168 |
+
"top_p": top_p
|
| 169 |
+
}
|
| 170 |
+
)
|
| 171 |
+
response.raise_for_status()
|
| 172 |
+
return response.json()["choices"][0]['message']['content']
|
| 173 |
+
except Exception as e:
|
| 174 |
+
return f"Error with Flow Judge completions model {model_name}: {str(e)}"
|
| 175 |
|
| 176 |
def get_model_response(
|
| 177 |
model_name,
|
|
|
|
| 191 |
# Determine if model is Prometheus or Atla
|
| 192 |
is_prometheus = (organization == "Prometheus")
|
| 193 |
is_atla = (organization == "Atla")
|
| 194 |
+
is_flow_judge = (organization == "Flow AI")
|
| 195 |
# For non-Prometheus/Atla models, use the Judge system prompt
|
| 196 |
+
system_prompt = None if (is_prometheus or is_atla or is_flow_judge) else JUDGE_SYSTEM_PROMPT
|
| 197 |
|
| 198 |
# Select the appropriate base prompt
|
| 199 |
if is_atla:
|
| 200 |
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
| 201 |
+
elif is_flow_judge:
|
| 202 |
+
base_prompt = FLOW_JUDGE_PROMPT
|
| 203 |
else:
|
| 204 |
+
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE if use_reference else PROMETHEUS_PROMPT
|
| 205 |
|
| 206 |
# For non-Prometheus/non-Atla models, replace the specific instruction
|
| 207 |
+
if not (is_prometheus or is_atla or is_flow_judge):
|
| 208 |
base_prompt = base_prompt.replace(
|
| 209 |
'3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"',
|
| 210 |
'3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.'
|
| 211 |
)
|
| 212 |
|
| 213 |
try:
|
| 214 |
+
if not is_flow_judge:
|
| 215 |
+
# Format the prompt with the provided data, only using available keys
|
| 216 |
+
final_prompt = base_prompt.format(
|
| 217 |
+
human_input=prompt_data['human_input'],
|
| 218 |
+
ai_response=prompt_data['ai_response'],
|
| 219 |
+
ground_truth_input=prompt_data.get('ground_truth_input', ''),
|
| 220 |
+
eval_criteria=prompt_data['eval_criteria'],
|
| 221 |
+
score1_desc=prompt_data['score1_desc'],
|
| 222 |
+
score2_desc=prompt_data['score2_desc'],
|
| 223 |
+
score3_desc=prompt_data['score3_desc'],
|
| 224 |
+
score4_desc=prompt_data['score4_desc'],
|
| 225 |
+
score5_desc=prompt_data['score5_desc']
|
| 226 |
+
)
|
| 227 |
+
else:
|
| 228 |
+
human_input = f"<user_input>\n{prompt_data['human_input']}\n</user_input>"
|
| 229 |
+
ai_response = f"<response>\n{prompt_data['ai_response']}\n</response>"
|
| 230 |
+
ground_truth=prompt_data.get('ground_truth_input', '')
|
| 231 |
+
if ground_truth:
|
| 232 |
+
response_reference = f"<response_reference>\n{ground_truth}\n</response_reference>"
|
| 233 |
+
else:
|
| 234 |
+
response_reference = ""
|
| 235 |
+
eval_criteria = prompt_data['eval_criteria']
|
| 236 |
+
score1_desc = f"- Score 1: {prompt_data['score1_desc']}\n"
|
| 237 |
+
score2_desc = f"- Score 2: {prompt_data['score2_desc']}\n"
|
| 238 |
+
score3_desc = f"- Score 3: {prompt_data['score3_desc']}\n"
|
| 239 |
+
score4_desc = f"- Score 4: {prompt_data['score4_desc']}\n"
|
| 240 |
+
score5_desc = f"- Score 5: {prompt_data['score5_desc']}"
|
| 241 |
+
rubric = score1_desc + score2_desc + score3_desc + score4_desc + score5_desc
|
| 242 |
+
if response_reference:
|
| 243 |
+
inputs = human_input + "\n"+ response_reference
|
| 244 |
+
else:
|
| 245 |
+
inputs = human_input
|
| 246 |
+
final_prompt = base_prompt.format(
|
| 247 |
+
INPUTS=inputs,
|
| 248 |
+
OUTPUT=ai_response,
|
| 249 |
+
EVALUATION_CRITERIA=eval_criteria,
|
| 250 |
+
RUBRIC=rubric
|
| 251 |
+
)
|
| 252 |
except KeyError as e:
|
| 253 |
return f"Error formatting prompt: Missing required field {str(e)}"
|
| 254 |
|
|
|
|
| 273 |
return get_cohere_response(
|
| 274 |
api_model, final_prompt, system_prompt, max_tokens, temperature
|
| 275 |
)
|
| 276 |
+
elif organization == "Flow AI":
|
| 277 |
+
return get_flow_judge_response(
|
| 278 |
+
api_model, final_prompt, max_tokens, temperature
|
| 279 |
+
)
|
| 280 |
else:
|
| 281 |
# All other organizations use Together API
|
| 282 |
return get_together_response(
|
|
|
|
| 363 |
except Exception as e:
|
| 364 |
print(f"Failed to parse response: {str(e)}")
|
| 365 |
return "Error", f"Exception during parsing: {str(e)}"
|
| 366 |
+
|
| 367 |
+
def flow_judge_parse_model_response(output):
|
| 368 |
+
try:
|
| 369 |
+
print(f"Raw model response: {output}")
|
| 370 |
+
# Convert multiple line breaks to single ones and strip whitespace
|
| 371 |
+
output = re.sub(r'\n{2,}', '\n', output.strip())
|
| 372 |
+
|
| 373 |
+
# Compile regex patterns
|
| 374 |
+
feedback_pattern = re.compile(r"<feedback>\s*(.*?)\s*</feedback>", re.DOTALL)
|
| 375 |
+
score_pattern = re.compile(r"<score>\s*(\d+)\s*</score>", re.DOTALL)
|
| 376 |
+
|
| 377 |
+
feedback_match = feedback_pattern.search(output)
|
| 378 |
+
score_match = score_pattern.search(output)
|
| 379 |
|
| 380 |
+
if feedback_match or not score_match:
|
| 381 |
+
feedback = feedback_match.group(1).strip()
|
| 382 |
+
score = int(score_match.group(1).strip())
|
| 383 |
+
return str(score), feedback
|
| 384 |
+
|
| 385 |
+
return "Error", f"Failed to parse response: {output}"
|
| 386 |
+
|
| 387 |
+
except Exception as e:
|
| 388 |
+
print(f"Failed to parse response: {str(e)}")
|
| 389 |
+
return "Error", f"Exception during parsing: {str(e)}"
|
| 390 |
+
|
| 391 |
def atla_parse_model_response(output):
|
| 392 |
"""Parse response from ATLA model"""
|
| 393 |
try:
|
prompts.py
CHANGED
|
@@ -90,6 +90,60 @@ Score 5: {score5_desc}
|
|
| 90 |
###Feedback:
|
| 91 |
"""
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# Judge system prompt for non-Prometheus models
|
| 94 |
JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction. Your output format should strictly adhere to JSON as follows: {"feedback": "<write feedback>", "result": <numerical score>}. Ensure the output is valid JSON, without additional formatting or explanations."""
|
| 95 |
|
|
|
|
| 90 |
###Feedback:
|
| 91 |
"""
|
| 92 |
|
| 93 |
+
# Define the Flow Judge prompt
|
| 94 |
+
FLOW_JUDGE_PROMPT = """# GOAL
|
| 95 |
+
Your job is to evaluate a task carried out by an AI system powered by a large \
|
| 96 |
+
language model.
|
| 97 |
+
|
| 98 |
+
You will be provided with the inputs and output of the task, as well as the evaluation criteria \
|
| 99 |
+
and scoring rubric. Your task is to evaluate the output of the AI system based on the evaluation \
|
| 100 |
+
criteria and scoring rubric provided.
|
| 101 |
+
|
| 102 |
+
# INPUT
|
| 103 |
+
Below are the inputs required for performing the task:
|
| 104 |
+
<inputs>
|
| 105 |
+
{INPUTS}
|
| 106 |
+
</inputs>
|
| 107 |
+
|
| 108 |
+
# OUTPUT
|
| 109 |
+
Below is the output of the task:
|
| 110 |
+
<output>
|
| 111 |
+
{OUTPUT}
|
| 112 |
+
</output>
|
| 113 |
+
|
| 114 |
+
# EVALUATION CRITERIA AND SCORING RUBRIC
|
| 115 |
+
Here are the evaluation criteria and the rubric that you need to use for evaluating the task:
|
| 116 |
+
<evaluation_criteria>
|
| 117 |
+
{EVALUATION_CRITERIA}
|
| 118 |
+
</evaluation_criteria>
|
| 119 |
+
|
| 120 |
+
<scoring_rubric>
|
| 121 |
+
{RUBRIC}
|
| 122 |
+
</scoring_rubric>
|
| 123 |
+
|
| 124 |
+
# INSTRUCTIONS FOR THE EVALUATION
|
| 125 |
+
1. Understand the task and criteria: Familiarize yourself with the task to be evaluated. \
|
| 126 |
+
Review the evaluation criteria and scoring rubric to understand the different levels of \
|
| 127 |
+
performance and the descriptions for each score.
|
| 128 |
+
2. Review the inputs and output: Look at the inputs provided for the task. Examine the output \
|
| 129 |
+
generated from completing the task.
|
| 130 |
+
3. Compare output to score descriptions: Compare the output against the criteria and score \
|
| 131 |
+
descriptions in the scoring rubric. For each criterion,decide which description best matches the \
|
| 132 |
+
output.
|
| 133 |
+
4. After comparing the output to the score descriptions, pay attention to the small details that \
|
| 134 |
+
might impact the final score that you assign. Sometimes a small difference can dictate the final \
|
| 135 |
+
score.
|
| 136 |
+
5. Write verbal feedback justifying your evaluation that includes a detailed rationale, referring \
|
| 137 |
+
to specific aspects of the output and comparing them to the rubric.
|
| 138 |
+
6. Assign a final score based on the scoring rubric.
|
| 139 |
+
|
| 140 |
+
## FORMAT FOR THE EVALUATION
|
| 141 |
+
- Write the verbal feedback inside <feedback> tags without any additional surrounding text.
|
| 142 |
+
- Write the numeric score inside <score> tags, without any additional surrounding text and always \
|
| 143 |
+
after the feedback.
|
| 144 |
+
|
| 145 |
+
Please accurately evaluate the task. Strictly adhere to the evaluation criteria and rubric."""
|
| 146 |
+
|
| 147 |
# Judge system prompt for non-Prometheus models
|
| 148 |
JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction. Your output format should strictly adhere to JSON as follows: {"feedback": "<write feedback>", "result": <numerical score>}. Ensure the output is valid JSON, without additional formatting or explanations."""
|
| 149 |
|