Delete gen_api_answer.py
Browse files- gen_api_answer.py +0 -484
gen_api_answer.py
DELETED
|
@@ -1,484 +0,0 @@
|
|
| 1 |
-
from openai import OpenAI
|
| 2 |
-
import anthropic
|
| 3 |
-
from together import Together
|
| 4 |
-
import cohere
|
| 5 |
-
import json
|
| 6 |
-
import re
|
| 7 |
-
import os
|
| 8 |
-
import requests
|
| 9 |
-
from prompts import (
|
| 10 |
-
JUDGE_SYSTEM_PROMPT,
|
| 11 |
-
PROMETHEUS_PROMPT,
|
| 12 |
-
PROMETHEUS_PROMPT_WITH_REFERENCE,
|
| 13 |
-
ATLA_PROMPT,
|
| 14 |
-
ATLA_PROMPT_WITH_REFERENCE,
|
| 15 |
-
FLOW_JUDGE_PROMPT
|
| 16 |
-
)
|
| 17 |
-
from transformers import AutoTokenizer
|
| 18 |
-
|
| 19 |
-
# Initialize clients
|
| 20 |
-
anthropic_client = anthropic.Anthropic()
|
| 21 |
-
openai_client = OpenAI()
|
| 22 |
-
together_client = Together()
|
| 23 |
-
hf_api_key = os.getenv("HF_API_KEY")
|
| 24 |
-
flow_judge_api_key = os.getenv("FLOW_JUDGE_API_KEY")
|
| 25 |
-
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
|
| 26 |
-
salesforce_api_key = os.getenv("SALESFORCE_API_KEY")
|
| 27 |
-
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 28 |
-
"""Get response from OpenAI API"""
|
| 29 |
-
try:
|
| 30 |
-
response = openai_client.chat.completions.create(
|
| 31 |
-
model=model_name,
|
| 32 |
-
messages=[
|
| 33 |
-
{"role": "system", "content": system_prompt},
|
| 34 |
-
{"role": "user", "content": prompt},
|
| 35 |
-
],
|
| 36 |
-
max_completion_tokens=max_tokens,
|
| 37 |
-
temperature=temperature,
|
| 38 |
-
)
|
| 39 |
-
return response.choices[0].message.content
|
| 40 |
-
except Exception as e:
|
| 41 |
-
return f"Error with OpenAI model {model_name}: {str(e)}"
|
| 42 |
-
|
| 43 |
-
def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 44 |
-
"""Get response from Anthropic API"""
|
| 45 |
-
try:
|
| 46 |
-
response = anthropic_client.messages.create(
|
| 47 |
-
model=model_name,
|
| 48 |
-
max_tokens=max_tokens,
|
| 49 |
-
temperature=temperature,
|
| 50 |
-
system=system_prompt,
|
| 51 |
-
messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
|
| 52 |
-
)
|
| 53 |
-
return response.content[0].text
|
| 54 |
-
except Exception as e:
|
| 55 |
-
return f"Error with Anthropic model {model_name}: {str(e)}"
|
| 56 |
-
|
| 57 |
-
def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 58 |
-
"""Get response from Together API"""
|
| 59 |
-
try:
|
| 60 |
-
response = together_client.chat.completions.create(
|
| 61 |
-
model=model_name,
|
| 62 |
-
messages=[
|
| 63 |
-
{"role": "system", "content": system_prompt},
|
| 64 |
-
{"role": "user", "content": prompt},
|
| 65 |
-
],
|
| 66 |
-
max_tokens=max_tokens,
|
| 67 |
-
temperature=temperature,
|
| 68 |
-
stream=False,
|
| 69 |
-
)
|
| 70 |
-
return response.choices[0].message.content
|
| 71 |
-
except Exception as e:
|
| 72 |
-
return f"Error with Together model {model_name}: {str(e)}"
|
| 73 |
-
|
| 74 |
-
def get_prometheus_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
| 75 |
-
"""Get response from Hugging Face model"""
|
| 76 |
-
try:
|
| 77 |
-
headers = {
|
| 78 |
-
"Accept": "application/json",
|
| 79 |
-
"Authorization": f"Bearer {hf_api_key}",
|
| 80 |
-
"Content-Type": "application/json"
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
# Create messages list for chat template
|
| 84 |
-
messages = []
|
| 85 |
-
if system_prompt:
|
| 86 |
-
messages.append({"role": "system", "content": system_prompt})
|
| 87 |
-
messages.append({"role": "user", "content": prompt})
|
| 88 |
-
|
| 89 |
-
# Apply chat template
|
| 90 |
-
model_id = "prometheus-eval/prometheus-7b-v2.0"
|
| 91 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
|
| 92 |
-
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 93 |
-
|
| 94 |
-
payload = {
|
| 95 |
-
"inputs": formatted_prompt,
|
| 96 |
-
"parameters": {
|
| 97 |
-
"max_new_tokens": max_tokens,
|
| 98 |
-
"return_full_text": False,
|
| 99 |
-
"temperature": temperature
|
| 100 |
-
}
|
| 101 |
-
}
|
| 102 |
-
|
| 103 |
-
response = requests.post(
|
| 104 |
-
"https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud",
|
| 105 |
-
headers=headers,
|
| 106 |
-
json=payload
|
| 107 |
-
)
|
| 108 |
-
return response.json()[0]["generated_text"]
|
| 109 |
-
except Exception as e:
|
| 110 |
-
return f"Error with Hugging Face model {model_name}: {str(e)}"
|
| 111 |
-
|
| 112 |
-
def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
| 113 |
-
"""Get response from HF endpoint for Atla model"""
|
| 114 |
-
try:
|
| 115 |
-
headers = {
|
| 116 |
-
"Accept": "application/json",
|
| 117 |
-
"Authorization": f"Bearer {hf_api_key}",
|
| 118 |
-
"Content-Type": "application/json"
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
# Create messages list for chat template
|
| 122 |
-
messages = []
|
| 123 |
-
if system_prompt:
|
| 124 |
-
messages.append({"role": "system", "content": system_prompt})
|
| 125 |
-
messages.append({"role": "user", "content": prompt})
|
| 126 |
-
|
| 127 |
-
# Apply chat template
|
| 128 |
-
model_id = "AtlaAI/Selene-1-Mini-Llama-3.1-8B"
|
| 129 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
|
| 130 |
-
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 131 |
-
|
| 132 |
-
payload = {
|
| 133 |
-
"inputs": formatted_prompt,
|
| 134 |
-
"parameters": {
|
| 135 |
-
"max_new_tokens": max_tokens,
|
| 136 |
-
"return_full_text": False,
|
| 137 |
-
"temperature": temperature,
|
| 138 |
-
"seed": 42,
|
| 139 |
-
"add_generation_prompt": True
|
| 140 |
-
}
|
| 141 |
-
}
|
| 142 |
-
|
| 143 |
-
response = requests.post(
|
| 144 |
-
"https://bkp9p28gri93egqh.us-east-1.aws.endpoints.huggingface.cloud",
|
| 145 |
-
headers=headers,
|
| 146 |
-
json=payload
|
| 147 |
-
)
|
| 148 |
-
return response.json()[0]["generated_text"]
|
| 149 |
-
except Exception as e:
|
| 150 |
-
return f"Error with Atla model {model_name}: {str(e)}"
|
| 151 |
-
|
| 152 |
-
def get_flow_judge_response(model_name, prompt, max_tokens=2048, temperature=0.1, top_p=0.95) -> str:
|
| 153 |
-
"""Get response from Flow Judge"""
|
| 154 |
-
try:
|
| 155 |
-
response = requests.post(
|
| 156 |
-
"https://arena.flow-ai.io/v1/chat/completions",
|
| 157 |
-
headers={
|
| 158 |
-
"Content-Type": "application/json",
|
| 159 |
-
"Authorization": f"Bearer {flow_judge_api_key}"
|
| 160 |
-
},
|
| 161 |
-
json={
|
| 162 |
-
"model": model_name,
|
| 163 |
-
"messages": [
|
| 164 |
-
{"role": "user", "content": prompt}
|
| 165 |
-
],
|
| 166 |
-
"max_tokens": max_tokens,
|
| 167 |
-
"temperature": temperature,
|
| 168 |
-
"top_p": top_p,
|
| 169 |
-
"stop": None
|
| 170 |
-
}
|
| 171 |
-
)
|
| 172 |
-
response.raise_for_status()
|
| 173 |
-
return response.json()["choices"][0]['message']['content']
|
| 174 |
-
except Exception as e:
|
| 175 |
-
return f"Error with Flow Judge completions model {model_name}: {str(e)}"
|
| 176 |
-
|
| 177 |
-
def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
| 178 |
-
"""Get response from Cohere API"""
|
| 179 |
-
try:
|
| 180 |
-
response = cohere_client.chat(
|
| 181 |
-
model=model_name,
|
| 182 |
-
messages=[
|
| 183 |
-
{"role": "system", "content": system_prompt},
|
| 184 |
-
{"role": "user", "content": prompt}
|
| 185 |
-
],
|
| 186 |
-
max_tokens=max_tokens,
|
| 187 |
-
temperature=temperature
|
| 188 |
-
)
|
| 189 |
-
# Extract the text from the content items
|
| 190 |
-
content_items = response.message.content
|
| 191 |
-
if isinstance(content_items, list):
|
| 192 |
-
# Get the text from the first content item
|
| 193 |
-
return content_items[0].text
|
| 194 |
-
return str(content_items) # Fallback if it's not a list
|
| 195 |
-
except Exception as e:
|
| 196 |
-
return f"Error with Cohere model {model_name}: {str(e)}"
|
| 197 |
-
|
| 198 |
-
def get_salesforce_response(model_name, prompt, system_prompt=None, max_tokens=2048, temperature=0):
|
| 199 |
-
"""Get response from Salesforce Research API"""
|
| 200 |
-
try:
|
| 201 |
-
headers = {
|
| 202 |
-
'accept': 'application/json',
|
| 203 |
-
"content-type": "application/json",
|
| 204 |
-
"X-Api-Key": salesforce_api_key,
|
| 205 |
-
}
|
| 206 |
-
|
| 207 |
-
# Create messages list
|
| 208 |
-
messages = []
|
| 209 |
-
messages.append({"role": "user", "content": prompt})
|
| 210 |
-
|
| 211 |
-
json_data = {
|
| 212 |
-
"prompts": messages,
|
| 213 |
-
"temperature": temperature,
|
| 214 |
-
"top_p": 1,
|
| 215 |
-
"max_tokens": max_tokens,
|
| 216 |
-
}
|
| 217 |
-
|
| 218 |
-
response = requests.post(
|
| 219 |
-
'https://gateway.salesforceresearch.ai/sfr-judge/process',
|
| 220 |
-
headers=headers,
|
| 221 |
-
json=json_data
|
| 222 |
-
)
|
| 223 |
-
response.raise_for_status()
|
| 224 |
-
return response.json()['result'][0]
|
| 225 |
-
except Exception as e:
|
| 226 |
-
return f"Error with Salesforce model {model_name}: {str(e)}"
|
| 227 |
-
|
| 228 |
-
def get_model_response(
|
| 229 |
-
model_name,
|
| 230 |
-
model_info,
|
| 231 |
-
prompt_data,
|
| 232 |
-
use_reference=False,
|
| 233 |
-
max_tokens=500,
|
| 234 |
-
temperature=0
|
| 235 |
-
):
|
| 236 |
-
"""Get response from appropriate API based on model organization"""
|
| 237 |
-
if not model_info:
|
| 238 |
-
return "Model not found or unsupported."
|
| 239 |
-
|
| 240 |
-
api_model = model_info["api_model"]
|
| 241 |
-
organization = model_info["organization"]
|
| 242 |
-
|
| 243 |
-
# Determine if model is Prometheus, Atla, Flow Judge, or Salesforce
|
| 244 |
-
is_prometheus = (organization == "Prometheus")
|
| 245 |
-
is_atla = (organization == "Atla")
|
| 246 |
-
is_flow_judge = (organization == "Flow AI")
|
| 247 |
-
is_salesforce = (organization == "Salesforce")
|
| 248 |
-
|
| 249 |
-
# For non-Prometheus/Atla/Flow Judge/Salesforce models, use the Judge system prompt
|
| 250 |
-
system_prompt = None if (is_prometheus or is_atla or is_flow_judge or is_salesforce) else JUDGE_SYSTEM_PROMPT
|
| 251 |
-
|
| 252 |
-
# Select the appropriate base prompt
|
| 253 |
-
if is_atla or is_salesforce: # Use same prompt for Atla and Salesforce
|
| 254 |
-
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
| 255 |
-
elif is_flow_judge:
|
| 256 |
-
base_prompt = FLOW_JUDGE_PROMPT
|
| 257 |
-
else:
|
| 258 |
-
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE if use_reference else PROMETHEUS_PROMPT
|
| 259 |
-
|
| 260 |
-
# For non-Prometheus/non-Atla/non-Salesforce models, use Prometheus but replace the output format with JSON
|
| 261 |
-
if not (is_prometheus or is_atla or is_flow_judge or is_salesforce):
|
| 262 |
-
base_prompt = base_prompt.replace(
|
| 263 |
-
'3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"',
|
| 264 |
-
'3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.'
|
| 265 |
-
)
|
| 266 |
-
|
| 267 |
-
try:
|
| 268 |
-
if not is_flow_judge:
|
| 269 |
-
# Format the prompt with the provided data
|
| 270 |
-
final_prompt = base_prompt.format(
|
| 271 |
-
human_input=prompt_data['human_input'],
|
| 272 |
-
ai_response=prompt_data['ai_response'],
|
| 273 |
-
ground_truth_input=prompt_data.get('ground_truth_input', ''),
|
| 274 |
-
eval_criteria=prompt_data['eval_criteria']
|
| 275 |
-
)
|
| 276 |
-
else:
|
| 277 |
-
human_input = f"<user_input>\n{prompt_data['human_input']}\n</user_input>"
|
| 278 |
-
ai_response = f"<response>\n{prompt_data['ai_response']}\n</response>"
|
| 279 |
-
ground_truth = prompt_data.get('ground_truth_input', '')
|
| 280 |
-
if ground_truth:
|
| 281 |
-
response_reference = f"<response_reference>\n{ground_truth}\n</response_reference>"
|
| 282 |
-
else:
|
| 283 |
-
response_reference = ""
|
| 284 |
-
|
| 285 |
-
# For Flow Judge, parse the scoring rubric from eval_criteria
|
| 286 |
-
eval_criteria_lines = prompt_data['eval_criteria'].split('\n')
|
| 287 |
-
rubric_lines = [line for line in eval_criteria_lines if line.startswith('Score ')]
|
| 288 |
-
rubric = '\n'.join(f"- {line}" for line in rubric_lines)
|
| 289 |
-
|
| 290 |
-
if response_reference:
|
| 291 |
-
inputs = human_input + "\n" + response_reference
|
| 292 |
-
else:
|
| 293 |
-
inputs = human_input
|
| 294 |
-
|
| 295 |
-
final_prompt = base_prompt.format(
|
| 296 |
-
INPUTS=inputs,
|
| 297 |
-
OUTPUT=ai_response,
|
| 298 |
-
EVALUATION_CRITERIA=prompt_data['eval_criteria'],
|
| 299 |
-
RUBRIC=rubric
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
except KeyError as e:
|
| 303 |
-
return f"Error formatting prompt: Missing required field {str(e)}"
|
| 304 |
-
|
| 305 |
-
try:
|
| 306 |
-
if organization == "OpenAI":
|
| 307 |
-
return get_openai_response(
|
| 308 |
-
api_model, final_prompt, system_prompt, max_tokens, temperature
|
| 309 |
-
)
|
| 310 |
-
elif organization == "Anthropic":
|
| 311 |
-
return get_anthropic_response(
|
| 312 |
-
api_model, final_prompt, system_prompt, max_tokens, temperature
|
| 313 |
-
)
|
| 314 |
-
elif organization == "Prometheus":
|
| 315 |
-
return get_prometheus_response(
|
| 316 |
-
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
| 317 |
-
)
|
| 318 |
-
elif organization == "Atla":
|
| 319 |
-
return get_atla_response(
|
| 320 |
-
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
| 321 |
-
)
|
| 322 |
-
elif organization == "Cohere":
|
| 323 |
-
return get_cohere_response(
|
| 324 |
-
api_model, final_prompt, system_prompt, max_tokens, temperature
|
| 325 |
-
)
|
| 326 |
-
elif organization == "Flow AI":
|
| 327 |
-
return get_flow_judge_response(
|
| 328 |
-
api_model, final_prompt
|
| 329 |
-
)
|
| 330 |
-
elif organization == "Salesforce":
|
| 331 |
-
response = get_salesforce_response(
|
| 332 |
-
api_model, final_prompt, system_prompt, max_tokens, temperature
|
| 333 |
-
)
|
| 334 |
-
return response
|
| 335 |
-
else:
|
| 336 |
-
# All other organizations use Together API
|
| 337 |
-
return get_together_response(
|
| 338 |
-
api_model, final_prompt, system_prompt, max_tokens, temperature
|
| 339 |
-
)
|
| 340 |
-
except Exception as e:
|
| 341 |
-
return f"Error with {organization} model {model_name}: {str(e)}"
|
| 342 |
-
|
| 343 |
-
def parse_model_response(response):
|
| 344 |
-
try:
|
| 345 |
-
# Debug print
|
| 346 |
-
print(f"Raw model response: {response}")
|
| 347 |
-
|
| 348 |
-
# If response is already a dictionary, use it directly
|
| 349 |
-
if isinstance(response, dict):
|
| 350 |
-
return str(response.get("result", "N/A")), response.get("feedback", "N/A")
|
| 351 |
-
|
| 352 |
-
# First try to parse the entire response as JSON
|
| 353 |
-
try:
|
| 354 |
-
data = json.loads(response)
|
| 355 |
-
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
| 356 |
-
except json.JSONDecodeError:
|
| 357 |
-
# If that fails, check if this is a Salesforce response (which uses ATLA format)
|
| 358 |
-
if "**Reasoning:**" in response or "**Result:**" in response:
|
| 359 |
-
# Use ATLA parser for Salesforce responses
|
| 360 |
-
return atla_parse_model_response(response)
|
| 361 |
-
|
| 362 |
-
# Otherwise try to find JSON within the response
|
| 363 |
-
json_match = re.search(r"{.*}", response, re.DOTALL)
|
| 364 |
-
if json_match:
|
| 365 |
-
data = json.loads(json_match.group(0))
|
| 366 |
-
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
| 367 |
-
else:
|
| 368 |
-
return "Error", f"Invalid response format returned - here is the raw model response: {response}"
|
| 369 |
-
|
| 370 |
-
except Exception as e:
|
| 371 |
-
# Debug print for error case
|
| 372 |
-
print(f"Failed to parse response: {str(e)}")
|
| 373 |
-
|
| 374 |
-
# If the error message itself contains valid JSON, try to parse that
|
| 375 |
-
try:
|
| 376 |
-
error_json_match = re.search(r"{.*}", str(e), re.DOTALL)
|
| 377 |
-
if error_json_match:
|
| 378 |
-
data = json.loads(error_json_match.group(0))
|
| 379 |
-
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
| 380 |
-
except:
|
| 381 |
-
pass
|
| 382 |
-
|
| 383 |
-
return "Error", f"Failed to parse response: {response}"
|
| 384 |
-
|
| 385 |
-
def prometheus_parse_model_response(output):
|
| 386 |
-
try:
|
| 387 |
-
print(f"Raw model response: {output}")
|
| 388 |
-
output = output.strip()
|
| 389 |
-
|
| 390 |
-
# Remove "Feedback:" prefix if present (case insensitive)
|
| 391 |
-
output = re.sub(r'^feedback:\s*', '', output, flags=re.IGNORECASE)
|
| 392 |
-
|
| 393 |
-
# New pattern to match [RESULT] X at the beginning
|
| 394 |
-
begin_result_pattern = r'^\[RESULT\]\s*(\d+)\s*\n*(.*?)$'
|
| 395 |
-
begin_match = re.search(begin_result_pattern, output, re.DOTALL | re.IGNORECASE)
|
| 396 |
-
if begin_match:
|
| 397 |
-
score = int(begin_match.group(1))
|
| 398 |
-
feedback = begin_match.group(2).strip()
|
| 399 |
-
return str(score), feedback
|
| 400 |
-
|
| 401 |
-
# Existing patterns for end-of-string results...
|
| 402 |
-
pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?"
|
| 403 |
-
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
|
| 404 |
-
if match:
|
| 405 |
-
feedback = match.group(1).strip()
|
| 406 |
-
score = int(match.group(2))
|
| 407 |
-
return str(score), feedback
|
| 408 |
-
|
| 409 |
-
# If no match, try to match "... Score: X"
|
| 410 |
-
pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?"
|
| 411 |
-
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
|
| 412 |
-
if match:
|
| 413 |
-
feedback = match.group(1).strip()
|
| 414 |
-
score = int(match.group(2))
|
| 415 |
-
return str(score), feedback
|
| 416 |
-
|
| 417 |
-
# Pattern to handle [Score X] at the end
|
| 418 |
-
pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$"
|
| 419 |
-
match = re.search(pattern, output, re.DOTALL)
|
| 420 |
-
if match:
|
| 421 |
-
feedback = match.group(1).strip()
|
| 422 |
-
score = int(match.group(2))
|
| 423 |
-
return str(score), feedback
|
| 424 |
-
|
| 425 |
-
# Final fallback attempt
|
| 426 |
-
pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$"
|
| 427 |
-
match = re.search(pattern, output)
|
| 428 |
-
if match:
|
| 429 |
-
score = int(match.group(1))
|
| 430 |
-
feedback = output[:match.start()].rstrip()
|
| 431 |
-
# Remove any trailing brackets from feedback
|
| 432 |
-
feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip()
|
| 433 |
-
return str(score), feedback
|
| 434 |
-
|
| 435 |
-
return "Error", f"Failed to parse response: {output}"
|
| 436 |
-
|
| 437 |
-
except Exception as e:
|
| 438 |
-
print(f"Failed to parse response: {str(e)}")
|
| 439 |
-
return "Error", f"Exception during parsing: {str(e)}"
|
| 440 |
-
|
| 441 |
-
def atla_parse_model_response(output):
|
| 442 |
-
"""Parse response from ATLA model"""
|
| 443 |
-
try:
|
| 444 |
-
print(f"Raw Atla model response: {output}")
|
| 445 |
-
output = output.strip()
|
| 446 |
-
|
| 447 |
-
# Look for the Reasoning and Result sections
|
| 448 |
-
reasoning_match = re.search(r'\*\*Reasoning:\*\*(.*?)(?=\*\*Result:|$)', output, re.DOTALL)
|
| 449 |
-
result_match = re.search(r'\*\*Result:\*\*\s*(\d+)', output)
|
| 450 |
-
|
| 451 |
-
if reasoning_match and result_match:
|
| 452 |
-
feedback = reasoning_match.group(1).strip()
|
| 453 |
-
score = result_match.group(1)
|
| 454 |
-
return str(score), feedback
|
| 455 |
-
|
| 456 |
-
return "Error", f"Failed to parse ATLA response format: {output}"
|
| 457 |
-
|
| 458 |
-
except Exception as e:
|
| 459 |
-
print(f"Failed to parse ATLA response: {str(e)}")
|
| 460 |
-
return "Error", f"Exception during parsing: {str(e)}"
|
| 461 |
-
|
| 462 |
-
def flow_judge_parse_model_response(output):
|
| 463 |
-
try:
|
| 464 |
-
print(f"Raw model response: {output}")
|
| 465 |
-
# Convert multiple line breaks to single ones and strip whitespace
|
| 466 |
-
output = re.sub(r'\n{2,}', '\n', output.strip())
|
| 467 |
-
|
| 468 |
-
# Compile regex patterns
|
| 469 |
-
feedback_pattern = re.compile(r"<feedback>\s*(.*?)\s*</feedback>", re.DOTALL)
|
| 470 |
-
score_pattern = re.compile(r"<score>\s*(\d+)\s*</score>", re.DOTALL)
|
| 471 |
-
|
| 472 |
-
feedback_match = feedback_pattern.search(output)
|
| 473 |
-
score_match = score_pattern.search(output)
|
| 474 |
-
|
| 475 |
-
if feedback_match or not score_match:
|
| 476 |
-
feedback = feedback_match.group(1).strip()
|
| 477 |
-
score = int(score_match.group(1).strip())
|
| 478 |
-
return str(score), feedback
|
| 479 |
-
|
| 480 |
-
return "Error", f"Failed to parse response: {output}"
|
| 481 |
-
|
| 482 |
-
except Exception as e:
|
| 483 |
-
print(f"Failed to parse response: {str(e)}")
|
| 484 |
-
return "Error", f"Exception during parsing: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|