Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| # Load Whisper model | |
| model_name = "AventIQ-AI/whisper-speech-text" | |
| stt_pipeline = pipeline("automatic-speech-recognition", model=model_name) | |
| def transcribe(audio_path): | |
| """Transcribe speech to text using Whisper.""" | |
| if audio_path is None: | |
| return "⚠️ Please upload or record an audio file." | |
| try: | |
| # Pass the file path directly to the Whisper pipeline | |
| result = stt_pipeline(audio_path) | |
| return f"📝 **Transcription:**\n{result['text']}" | |
| except Exception as e: | |
| return f"❌ Error processing audio: {str(e)}" | |
| # Create Enhanced Gradio Interface | |
| with gr.Blocks(theme="default") as demo: | |
| gr.Markdown( | |
| """ | |
| # 🎤 **Whisper Speech-to-Text** | |
| **Upload or record an audio file** and this tool will convert your speech into text using **AventIQ-AI Whisper Model**. | |
| Supports **MP3, WAV, FLAC** formats. | |
| """ | |
| ) | |
| with gr.Row(): | |
| audio_input = gr.Audio(type="filepath", label="🎙️ Upload or Record Your Voice") | |
| transcribed_text = gr.Textbox(label="📝 Transcription", interactive=False) | |
| submit_btn = gr.Button("🎧 Transcribe", variant="primary") | |
| submit_btn.click(transcribe, inputs=audio_input, outputs=transcribed_text) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo.launch() | |