Spaces:
Sleeping
Sleeping
| import os | |
| import json | |
| import numpy as np | |
| from datasets import load_dataset | |
| from transformers import AutoTokenizer, AutoModelForQuestionAnswering | |
| import torch | |
| from sklearn.metrics import f1_score | |
| import re | |
| from collections import Counter | |
| import string | |
| from huggingface_hub import login | |
| import gradio as gr | |
| import pandas as pd | |
| from datetime import datetime | |
| def normalize_answer(s): | |
| """Identical to extractor's normalization""" | |
| def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) | |
| def white_space_fix(text): return ' '.join(text.split()) | |
| def remove_punc(text): | |
| return ''.join(ch for ch in text if ch not in set(string.punctuation)) | |
| def lower(text): return text.lower() | |
| return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
| def f1_score_qa(prediction, ground_truth): | |
| """Identical to original""" | |
| prediction_tokens = normalize_answer(prediction).split() | |
| ground_truth_tokens = normalize_answer(ground_truth).split() | |
| common = Counter(prediction_tokens) & Counter(ground_truth_tokens) | |
| num_same = sum(common.values()) | |
| if num_same == 0: return 0 | |
| precision = 1.0 * num_same / len(prediction_tokens) | |
| recall = 1.0 * num_same / len(ground_truth_tokens) | |
| return (2 * precision * recall) / (precision + recall) | |
| def exact_match_score(prediction, ground_truth): | |
| """Identical to original""" | |
| return normalize_answer(prediction) == normalize_answer(ground_truth) | |
| def get_qa_confidence(model, tokenizer, question, context): | |
| """Identical to extractor's confidence calculation""" | |
| inputs = tokenizer( | |
| question, context, | |
| return_tensors="pt", | |
| truncation=True, | |
| max_length=512, | |
| stride=128, | |
| padding=True | |
| ) | |
| if torch.cuda.is_available(): | |
| inputs = {k:v.cuda() for k,v in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| start_probs = torch.softmax(outputs.start_logits, dim=1) | |
| end_probs = torch.softmax(outputs.end_logits, dim=1) | |
| answer_start = torch.argmax(outputs.start_logits) | |
| answer_end = torch.argmax(outputs.end_logits) + 1 | |
| confidence = np.sqrt( | |
| start_probs[0, answer_start].item() * | |
| end_probs[0, answer_end-1].item() | |
| ) | |
| answer_tokens = inputs["input_ids"][0][answer_start:answer_end] | |
| answer = tokenizer.decode(answer_tokens, skip_special_tokens=True).strip() | |
| return answer, float(confidence) | |
| def run_evaluation(num_samples, progress=gr.Progress()): | |
| """Modified to use extractor's confidence calculation""" | |
| # Authentication | |
| hf_token = os.getenv("EVAL_TOKEN") | |
| if hf_token: | |
| try: | |
| login(token=hf_token) | |
| except Exception as e: | |
| print(f"Auth error: {e}") | |
| # Load model (raw instead of pipeline) | |
| model_name = "AvocadoMuffin/roberta-cuad-qa-v2" | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) | |
| model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token) | |
| if torch.cuda.is_available(): | |
| model = model.cuda() | |
| except Exception as e: | |
| return f"β Model load failed: {e}", pd.DataFrame(), None | |
| # Load dataset | |
| progress(0.1, desc="Loading CUAD dataset...") | |
| try: | |
| dataset = load_dataset( | |
| "theatticusproject/cuad-qa", | |
| trust_remote_code=True, | |
| token=hf_token | |
| ) | |
| test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"])))) | |
| except Exception as e: | |
| return f"β Dataset load failed: {e}", pd.DataFrame(), None | |
| predictions = [] | |
| for i, example in enumerate(test_data): | |
| progress((0.2 + 0.7 * i / num_samples), desc=f"Processing {i+1}/{num_samples}") | |
| try: | |
| context = example["context"] | |
| question = example["question"] | |
| gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else "" | |
| # Use extractor-style confidence | |
| pred_answer, confidence = get_qa_confidence(model, tokenizer, question, context) | |
| predictions.append({ | |
| "Sample_ID": i+1, | |
| "Question": question[:100] + "..." if len(question) > 100 else question, | |
| "Predicted_Answer": pred_answer, | |
| "Ground_Truth": gt_answer, | |
| "Exact_Match": exact_match_score(pred_answer, gt_answer), | |
| "F1_Score": round(f1_score_qa(pred_answer, gt_answer), 3), | |
| "Confidence": round(confidence, 3) # Now matches extractor | |
| }) | |
| except Exception as e: | |
| print(f"Error sample {i}: {e}") | |
| continue | |
| # Generate report (identical to original) | |
| if not predictions: | |
| return "β No valid predictions", pd.DataFrame(), None | |
| df = pd.DataFrame(predictions) | |
| avg_em = df["Exact_Match"].mean() * 100 | |
| avg_f1 = df["F1_Score"].mean() * 100 | |
| results_summary = f""" | |
| # π Evaluation Results (n={len(df)}) | |
| ## π― Metrics | |
| - Exact Match: {avg_em:.2f}% | |
| - F1 Score: {avg_f1:.2f}% | |
| - Avg Confidence: {df['Confidence'].mean():.2%} | |
| ## π Confidence Analysis | |
| - High-Confidence (>80%) Accuracy: { | |
| df[df['Confidence'] > 0.8]['Exact_Match'].mean():.1%} | |
| """ | |
| # Save results (identical to original) | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| results_file = f"cuad_eval_{timestamp}.json" | |
| with open(results_file, "w") as f: | |
| json.dump({ | |
| "model": model_name, | |
| "metrics": { | |
| "exact_match": float(avg_em), | |
| "f1_score": float(avg_f1), | |
| "avg_confidence": float(df['Confidence'].mean()) | |
| }, | |
| "samples": predictions | |
| }, f, indent=2) | |
| return results_summary, df, results_file | |
| # YOUR ORIGINAL GRADIO INTERFACE (COMPLETELY UNCHANGED) | |
| def create_gradio_interface(): | |
| with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo: | |
| gr.HTML(""" | |
| <div style="text-align: center; padding: 20px;"> | |
| <h1>ποΈ CUAD Model Evaluation Dashboard</h1> | |
| <p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p> | |
| <p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v2</p> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.HTML("<h3>βοΈ Evaluation Settings</h3>") | |
| num_samples = gr.Slider(10, 500, value=100, step=10, label="Number of samples") | |
| evaluate_btn = gr.Button("π Start Evaluation", variant="primary") | |
| with gr.Column(scale=2): | |
| results_summary = gr.Markdown("Click 'π Start Evaluation' to begin...") | |
| gr.HTML("<hr>") | |
| detailed_results = gr.Dataframe(interactive=False, wrap=True) | |
| download_file = gr.File(visible=False) | |
| def handle_eval(num_samples): | |
| summary, df, file = run_evaluation(num_samples) | |
| return ( | |
| summary, | |
| df[["Sample_ID", "Question", "Predicted_Answer", "Confidence", "Exact_Match"]], | |
| gr.File(visible=True, value=file) if file else gr.File(visible=False) | |
| ) | |
| evaluate_btn.click( | |
| fn=handle_eval, | |
| inputs=num_samples, | |
| outputs=[results_summary, detailed_results, download_file], | |
| show_progress=True | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_gradio_interface() | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=True | |
| ) |