Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,37 +2,41 @@ import os
|
|
| 2 |
import json
|
| 3 |
import numpy as np
|
| 4 |
from datasets import load_dataset
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 6 |
import torch
|
|
|
|
|
|
|
| 7 |
from collections import Counter
|
| 8 |
import string
|
|
|
|
|
|
|
| 9 |
import pandas as pd
|
| 10 |
from datetime import datetime
|
| 11 |
|
| 12 |
-
# Normalization functions
|
| 13 |
def normalize_answer(s):
|
| 14 |
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
| 15 |
def white_space_fix(text): return ' '.join(text.split())
|
| 16 |
def remove_punc(text):
|
| 17 |
-
|
|
|
|
| 18 |
def lower(text): return text.lower()
|
| 19 |
-
return white_space_fix(remove_articles(remove_punc(lower(s)))
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def f1_score_qa(pred, truth):
|
| 26 |
-
pred_tokens = normalize_answer(pred).split()
|
| 27 |
-
truth_tokens = normalize_answer(truth).split()
|
| 28 |
-
common = Counter(pred_tokens) & Counter(truth_tokens)
|
| 29 |
num_same = sum(common.values())
|
| 30 |
if num_same == 0: return 0
|
| 31 |
-
precision = num_same / len(
|
| 32 |
-
recall = num_same / len(
|
| 33 |
return (2 * precision * recall) / (precision + recall)
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
def get_qa_confidence(model, tokenizer, question, context):
|
| 37 |
inputs = tokenizer(
|
| 38 |
question, context,
|
|
@@ -63,35 +67,46 @@ def get_qa_confidence(model, tokenizer, question, context):
|
|
| 63 |
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
| 64 |
return answer.strip(), float(confidence)
|
| 65 |
|
| 66 |
-
def run_evaluation(num_samples=
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
token=os.getenv("HF_TOKEN", True) # True allows anonymous access
|
| 72 |
-
)
|
| 73 |
-
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
| 74 |
|
| 75 |
-
# Load model
|
| 76 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
| 77 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 78 |
-
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
results = []
|
| 81 |
-
for example in test_data:
|
|
|
|
|
|
|
| 82 |
context = example["context"]
|
| 83 |
question = example["question"]
|
| 84 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
| 85 |
|
| 86 |
-
|
| 87 |
|
| 88 |
results.append({
|
| 89 |
-
"
|
| 90 |
-
"
|
| 91 |
-
"
|
| 92 |
-
"
|
| 93 |
-
"
|
| 94 |
-
"
|
| 95 |
})
|
| 96 |
|
| 97 |
# Generate report
|
|
@@ -99,31 +114,71 @@ def run_evaluation(num_samples=100):
|
|
| 99 |
report = f"""
|
| 100 |
Evaluation Results (n={len(df)})
|
| 101 |
=================
|
| 102 |
-
Exact Match: {df['
|
| 103 |
-
F1 Score: {df['
|
| 104 |
-
Avg Confidence: {df['
|
| 105 |
-
High-Confidence Accuracy: {
|
| 106 |
-
df[df['
|
| 107 |
"""
|
| 108 |
|
| 109 |
-
# Save
|
| 110 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 111 |
results_file = f"eval_results_{timestamp}.json"
|
| 112 |
with open(results_file, 'w') as f:
|
| 113 |
json.dump({
|
| 114 |
-
"
|
| 115 |
"metrics": {
|
| 116 |
-
"exact_match": float(df['
|
| 117 |
-
"f1": float(df['
|
| 118 |
-
"
|
| 119 |
},
|
| 120 |
"samples": results
|
| 121 |
}, f, indent=2)
|
| 122 |
|
| 123 |
return report, df, results_file
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
if __name__ == "__main__":
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import json
|
| 3 |
import numpy as np
|
| 4 |
from datasets import load_dataset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
|
| 6 |
import torch
|
| 7 |
+
from sklearn.metrics import f1_score
|
| 8 |
+
import re
|
| 9 |
from collections import Counter
|
| 10 |
import string
|
| 11 |
+
from huggingface_hub import login
|
| 12 |
+
import gradio as gr
|
| 13 |
import pandas as pd
|
| 14 |
from datetime import datetime
|
| 15 |
|
| 16 |
+
# Normalization functions (identical to extractor)
|
| 17 |
def normalize_answer(s):
|
| 18 |
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
| 19 |
def white_space_fix(text): return ' '.join(text.split())
|
| 20 |
def remove_punc(text):
|
| 21 |
+
exclude = set(string.punctuation)
|
| 22 |
+
return ''.join(ch for ch in text if ch not in exclude)
|
| 23 |
def lower(text): return text.lower()
|
| 24 |
+
return white_space_fix(remove_articles(remove_punc(lower(s)))
|
| 25 |
|
| 26 |
+
def f1_score_qa(prediction, ground_truth):
|
| 27 |
+
prediction_tokens = normalize_answer(prediction).split()
|
| 28 |
+
ground_truth_tokens = normalize_answer(ground_truth).split()
|
| 29 |
+
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
num_same = sum(common.values())
|
| 31 |
if num_same == 0: return 0
|
| 32 |
+
precision = 1.0 * num_same / len(prediction_tokens)
|
| 33 |
+
recall = 1.0 * num_same / len(ground_truth_tokens)
|
| 34 |
return (2 * precision * recall) / (precision + recall)
|
| 35 |
|
| 36 |
+
def exact_match_score(prediction, ground_truth):
|
| 37 |
+
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
| 38 |
+
|
| 39 |
+
# Identical confidence calculation to extractor
|
| 40 |
def get_qa_confidence(model, tokenizer, question, context):
|
| 41 |
inputs = tokenizer(
|
| 42 |
question, context,
|
|
|
|
| 67 |
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
| 68 |
return answer.strip(), float(confidence)
|
| 69 |
|
| 70 |
+
def run_evaluation(num_samples, progress=gr.Progress()):
|
| 71 |
+
# Authentication
|
| 72 |
+
hf_token = os.getenv("EVAL_TOKEN")
|
| 73 |
+
if hf_token:
|
| 74 |
+
login(token=hf_token)
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# Load model same as extractor
|
| 77 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
| 79 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
|
| 80 |
+
|
| 81 |
+
progress(0.1, desc="Loading CUAD dataset...")
|
| 82 |
+
try:
|
| 83 |
+
dataset = load_dataset(
|
| 84 |
+
"theatticusproject/cuad-qa",
|
| 85 |
+
trust_remote_code=True,
|
| 86 |
+
token=hf_token
|
| 87 |
+
)
|
| 88 |
+
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
| 89 |
+
print(f"β Loaded {len(test_data)} samples")
|
| 90 |
+
except Exception as e:
|
| 91 |
+
return f"β Dataset load failed: {str(e)}", pd.DataFrame(), None
|
| 92 |
|
| 93 |
results = []
|
| 94 |
+
for i, example in enumerate(test_data):
|
| 95 |
+
progress(0.2 + 0.7*i/num_samples, desc=f"Evaluating {i+1}/{num_samples}")
|
| 96 |
+
|
| 97 |
context = example["context"]
|
| 98 |
question = example["question"]
|
| 99 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
| 100 |
|
| 101 |
+
pred_answer, confidence = get_qa_confidence(model, tokenizer, question, context)
|
| 102 |
|
| 103 |
results.append({
|
| 104 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
| 105 |
+
"Prediction": pred_answer,
|
| 106 |
+
"Truth": gt_answer,
|
| 107 |
+
"Confidence": confidence,
|
| 108 |
+
"Exact Match": exact_match_score(pred_answer, gt_answer),
|
| 109 |
+
"F1": f1_score_qa(pred_answer, gt_answer)
|
| 110 |
})
|
| 111 |
|
| 112 |
# Generate report
|
|
|
|
| 114 |
report = f"""
|
| 115 |
Evaluation Results (n={len(df)})
|
| 116 |
=================
|
| 117 |
+
- Exact Match: {df['Exact Match'].mean():.1%}
|
| 118 |
+
- F1 Score: {df['F1'].mean():.1%}
|
| 119 |
+
- Avg Confidence: {df['Confidence'].mean():.1%}
|
| 120 |
+
- High-Confidence (>80%) Accuracy: {
|
| 121 |
+
df[df['Confidence'] > 0.8]['Exact Match'].mean():.1%}
|
| 122 |
"""
|
| 123 |
|
| 124 |
+
# Save results
|
| 125 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 126 |
results_file = f"eval_results_{timestamp}.json"
|
| 127 |
with open(results_file, 'w') as f:
|
| 128 |
json.dump({
|
| 129 |
+
"model": model_name,
|
| 130 |
"metrics": {
|
| 131 |
+
"exact_match": float(df['Exact Match'].mean()),
|
| 132 |
+
"f1": float(df['F1'].mean()),
|
| 133 |
+
"avg_confidence": float(df['Confidence'].mean())
|
| 134 |
},
|
| 135 |
"samples": results
|
| 136 |
}, f, indent=2)
|
| 137 |
|
| 138 |
return report, df, results_file
|
| 139 |
|
| 140 |
+
def create_gradio_interface():
|
| 141 |
+
with gr.Blocks(title="CUAD Evaluator") as demo:
|
| 142 |
+
gr.Markdown("## ποΈ CUAD QA Model Evaluation")
|
| 143 |
+
|
| 144 |
+
with gr.Row():
|
| 145 |
+
num_samples = gr.Slider(10, 500, value=100, step=10,
|
| 146 |
+
label="Number of Samples")
|
| 147 |
+
eval_btn = gr.Button("π Run Evaluation", variant="primary")
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
report = gr.Markdown("Results will appear here...")
|
| 151 |
+
results_table = gr.Dataframe(headers=["Question", "Prediction", "Confidence", "Exact Match"])
|
| 152 |
+
|
| 153 |
+
download = gr.File(label="Download Results", visible=False)
|
| 154 |
+
|
| 155 |
+
def run_and_display(num_samples):
|
| 156 |
+
report_text, df, file = run_evaluation(num_samples)
|
| 157 |
+
return (
|
| 158 |
+
report_text,
|
| 159 |
+
df[["Question", "Prediction", "Confidence", "Exact Match"]],
|
| 160 |
+
gr.File(visible=True, value=file)
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
eval_btn.click(
|
| 164 |
+
fn=run_and_display,
|
| 165 |
+
inputs=num_samples,
|
| 166 |
+
outputs=[report, results_table, download]
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
return demo
|
| 170 |
+
|
| 171 |
if __name__ == "__main__":
|
| 172 |
+
# Verify CUDA
|
| 173 |
+
if torch.cuda.is_available():
|
| 174 |
+
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
|
| 175 |
+
else:
|
| 176 |
+
print("! Using CPU")
|
| 177 |
+
|
| 178 |
+
# Launch Gradio
|
| 179 |
+
demo = create_gradio_interface()
|
| 180 |
+
demo.launch(
|
| 181 |
+
server_name="0.0.0.0",
|
| 182 |
+
server_port=7860,
|
| 183 |
+
share=True
|
| 184 |
+
)
|