Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,151 +4,126 @@ import numpy as np
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 6 |
import torch
|
| 7 |
-
from sklearn.metrics import f1_score
|
| 8 |
-
import re
|
| 9 |
from collections import Counter
|
| 10 |
import string
|
| 11 |
-
from huggingface_hub import login
|
| 12 |
-
import gradio as gr
|
| 13 |
import pandas as pd
|
| 14 |
from datetime import datetime
|
| 15 |
-
import matplotlib.pyplot as plt
|
| 16 |
|
| 17 |
-
# Normalization functions
|
| 18 |
def normalize_answer(s):
|
| 19 |
-
def remove_articles(text):
|
| 20 |
-
|
| 21 |
-
def
|
| 22 |
-
return '
|
| 23 |
-
def
|
| 24 |
-
exclude = set(string.punctuation)
|
| 25 |
-
return ''.join(ch for ch in text if ch not in exclude)
|
| 26 |
-
def lower(text):
|
| 27 |
-
return text.lower()
|
| 28 |
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
num_same = sum(common.values())
|
| 35 |
-
if num_same == 0:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
recall = 1.0 * num_same / len(ground_truth_tokens)
|
| 39 |
return (2 * precision * recall) / (precision + recall)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
# Identical confidence calculation to extractor
|
| 45 |
-
def calculate_confidence(model, tokenizer, question, context):
|
| 46 |
inputs = tokenizer(
|
| 47 |
-
question,
|
| 48 |
-
context,
|
| 49 |
return_tensors="pt",
|
| 50 |
truncation=True,
|
| 51 |
max_length=512,
|
| 52 |
stride=128,
|
| 53 |
padding=True
|
| 54 |
)
|
| 55 |
-
|
| 56 |
if torch.cuda.is_available():
|
| 57 |
-
inputs = {k:
|
| 58 |
model = model.cuda()
|
| 59 |
-
|
| 60 |
with torch.no_grad():
|
| 61 |
outputs = model(**inputs)
|
| 62 |
-
|
| 63 |
start_probs = torch.softmax(outputs.start_logits, dim=1)
|
| 64 |
end_probs = torch.softmax(outputs.end_logits, dim=1)
|
| 65 |
answer_start = torch.argmax(outputs.start_logits)
|
| 66 |
answer_end = torch.argmax(outputs.end_logits) + 1
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
|
| 73 |
-
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
| 74 |
-
|
| 75 |
-
return answer, float(confidence)
|
| 76 |
|
| 77 |
def run_evaluation(num_samples=100):
|
| 78 |
-
#
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
# Load model
|
| 83 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
| 84 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 85 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 86 |
|
| 87 |
-
# Load CUAD dataset
|
| 88 |
-
dataset = load_dataset("theatticusproject/cuad-qa", token=token)
|
| 89 |
-
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
| 90 |
-
|
| 91 |
results = []
|
| 92 |
for example in test_data:
|
| 93 |
context = example["context"]
|
| 94 |
question = example["question"]
|
| 95 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
results.append({
|
| 100 |
-
"question": question,
|
| 101 |
-
"prediction":
|
| 102 |
-
"
|
| 103 |
-
"
|
| 104 |
-
"
|
| 105 |
-
"
|
| 106 |
})
|
| 107 |
|
| 108 |
# Generate report
|
| 109 |
df = pd.DataFrame(results)
|
| 110 |
-
avg_metrics = {
|
| 111 |
-
"exact_match": df["exact_match"].mean() * 100,
|
| 112 |
-
"f1": df["f1"].mean() * 100,
|
| 113 |
-
"confidence": df["confidence"].mean() * 100
|
| 114 |
-
}
|
| 115 |
-
|
| 116 |
-
# Confidence calibration analysis
|
| 117 |
-
high_conf_correct = df[(df["confidence"] > 0.8) & (df["exact_match"] == 1)].shape[0]
|
| 118 |
-
high_conf_total = df[df["confidence"] > 0.8].shape[0]
|
| 119 |
-
|
| 120 |
report = f"""
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
- Avg Confidence: {avg_metrics['confidence']:.2f}%
|
| 129 |
-
- High-Confidence (>80%) Accuracy: {high_conf_correct}/{high_conf_total} ({high_conf_correct/max(1,high_conf_total)*100:.1f}%)
|
| 130 |
-
|
| 131 |
-
Confidence vs Accuracy:
|
| 132 |
-
{df[['confidence', 'exact_match']].corr().iloc[0,1]:.3f} correlation
|
| 133 |
"""
|
| 134 |
|
| 135 |
-
# Save
|
| 136 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 137 |
-
results_file = f"
|
| 138 |
-
with open(results_file,
|
| 139 |
json.dump({
|
| 140 |
-
"
|
| 141 |
-
"
|
| 142 |
-
|
| 143 |
-
"
|
| 144 |
-
"
|
| 145 |
-
}
|
|
|
|
| 146 |
}, f, indent=2)
|
| 147 |
|
| 148 |
return report, df, results_file
|
| 149 |
|
| 150 |
if __name__ == "__main__":
|
| 151 |
-
report, df, _ = run_evaluation()
|
| 152 |
print(report)
|
| 153 |
print("\nSample predictions:")
|
| 154 |
-
print(df.head())
|
|
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 6 |
import torch
|
|
|
|
|
|
|
| 7 |
from collections import Counter
|
| 8 |
import string
|
|
|
|
|
|
|
| 9 |
import pandas as pd
|
| 10 |
from datetime import datetime
|
|
|
|
| 11 |
|
| 12 |
+
# Normalization functions
|
| 13 |
def normalize_answer(s):
|
| 14 |
+
def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text)
|
| 15 |
+
def white_space_fix(text): return ' '.join(text.split())
|
| 16 |
+
def remove_punc(text):
|
| 17 |
+
return ''.join(ch for ch in text if ch not in set(string.punctuation))
|
| 18 |
+
def lower(text): return text.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
| 20 |
|
| 21 |
+
# Metrics
|
| 22 |
+
def exact_match_score(pred, truth):
|
| 23 |
+
return int(normalize_answer(pred) == normalize_answer(truth))
|
| 24 |
+
|
| 25 |
+
def f1_score_qa(pred, truth):
|
| 26 |
+
pred_tokens = normalize_answer(pred).split()
|
| 27 |
+
truth_tokens = normalize_answer(truth).split()
|
| 28 |
+
common = Counter(pred_tokens) & Counter(truth_tokens)
|
| 29 |
num_same = sum(common.values())
|
| 30 |
+
if num_same == 0: return 0
|
| 31 |
+
precision = num_same / len(pred_tokens)
|
| 32 |
+
recall = num_same / len(truth_tokens)
|
|
|
|
| 33 |
return (2 * precision * recall) / (precision + recall)
|
| 34 |
|
| 35 |
+
# Identical to extractor's QA confidence
|
| 36 |
+
def get_qa_confidence(model, tokenizer, question, context):
|
|
|
|
|
|
|
|
|
|
| 37 |
inputs = tokenizer(
|
| 38 |
+
question, context,
|
|
|
|
| 39 |
return_tensors="pt",
|
| 40 |
truncation=True,
|
| 41 |
max_length=512,
|
| 42 |
stride=128,
|
| 43 |
padding=True
|
| 44 |
)
|
|
|
|
| 45 |
if torch.cuda.is_available():
|
| 46 |
+
inputs = {k:v.cuda() for k,v in inputs.items()}
|
| 47 |
model = model.cuda()
|
| 48 |
+
|
| 49 |
with torch.no_grad():
|
| 50 |
outputs = model(**inputs)
|
| 51 |
+
|
| 52 |
start_probs = torch.softmax(outputs.start_logits, dim=1)
|
| 53 |
end_probs = torch.softmax(outputs.end_logits, dim=1)
|
| 54 |
answer_start = torch.argmax(outputs.start_logits)
|
| 55 |
answer_end = torch.argmax(outputs.end_logits) + 1
|
| 56 |
|
| 57 |
+
confidence = np.sqrt(
|
| 58 |
+
start_probs[0, answer_start].item() *
|
| 59 |
+
end_probs[0, answer_end-1].item()
|
| 60 |
+
)
|
| 61 |
|
| 62 |
answer_tokens = inputs["input_ids"][0][answer_start:answer_end]
|
| 63 |
+
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
| 64 |
+
return answer.strip(), float(confidence)
|
|
|
|
| 65 |
|
| 66 |
def run_evaluation(num_samples=100):
|
| 67 |
+
# Load CUAD with remote code trust
|
| 68 |
+
dataset = load_dataset(
|
| 69 |
+
"theatticusproject/cuad-qa",
|
| 70 |
+
trust_remote_code=True,
|
| 71 |
+
token=os.getenv("HF_TOKEN", True) # True allows anonymous access
|
| 72 |
+
)
|
| 73 |
+
test_data = dataset["test"].select(range(min(num_samples, len(dataset["test"]))))
|
| 74 |
|
| 75 |
+
# Load model
|
| 76 |
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
| 77 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 78 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
results = []
|
| 81 |
for example in test_data:
|
| 82 |
context = example["context"]
|
| 83 |
question = example["question"]
|
| 84 |
gt_answer = example["answers"]["text"][0] if example["answers"]["text"] else ""
|
| 85 |
|
| 86 |
+
pred, conf = get_qa_confidence(model, tokenizer, question, context)
|
| 87 |
|
| 88 |
results.append({
|
| 89 |
+
"question": question[:100] + "..." if len(question) > 100 else question,
|
| 90 |
+
"prediction": pred,
|
| 91 |
+
"confidence": conf,
|
| 92 |
+
"exact_match": exact_match_score(pred, gt_answer),
|
| 93 |
+
"f1": f1_score_qa(pred, gt_answer),
|
| 94 |
+
"ground_truth": gt_answer
|
| 95 |
})
|
| 96 |
|
| 97 |
# Generate report
|
| 98 |
df = pd.DataFrame(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
report = f"""
|
| 100 |
+
Evaluation Results (n={len(df)})
|
| 101 |
+
=================
|
| 102 |
+
Exact Match: {df['exact_match'].mean():.1%}
|
| 103 |
+
F1 Score: {df['f1'].mean():.1%}
|
| 104 |
+
Avg Confidence: {df['confidence'].mean():.1%}
|
| 105 |
+
High-Confidence Accuracy: {
|
| 106 |
+
df[df['confidence'] > 0.8]['exact_match'].mean():.1%}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
"""
|
| 108 |
|
| 109 |
+
# Save
|
| 110 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 111 |
+
results_file = f"eval_results_{timestamp}.json"
|
| 112 |
+
with open(results_file, 'w') as f:
|
| 113 |
json.dump({
|
| 114 |
+
"config": {"model": model_name, "dataset": "cuad-qa"},
|
| 115 |
+
"metrics": {
|
| 116 |
+
"exact_match": float(df['exact_match'].mean()),
|
| 117 |
+
"f1": float(df['f1'].mean()),
|
| 118 |
+
"confidence": float(df['confidence'].mean())
|
| 119 |
+
},
|
| 120 |
+
"samples": results
|
| 121 |
}, f, indent=2)
|
| 122 |
|
| 123 |
return report, df, results_file
|
| 124 |
|
| 125 |
if __name__ == "__main__":
|
| 126 |
+
report, df, _ = run_evaluation(num_samples=50)
|
| 127 |
print(report)
|
| 128 |
print("\nSample predictions:")
|
| 129 |
+
print(df[["question", "confidence", "exact_match"]].head())
|