Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,11 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from keras.models import load_model
|
| 3 |
-
import numpy as np
|
| 4 |
-
import tensorflow as tf
|
| 5 |
import nltk
|
| 6 |
import re
|
| 7 |
from nltk.corpus import stopwords
|
| 8 |
from nltk.tokenize import TweetTokenizer
|
| 9 |
-
from nltk.tokenize import word_tokenize
|
| 10 |
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 11 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 12 |
-
|
| 13 |
import subprocess
|
| 14 |
|
| 15 |
# Command to execute
|
|
@@ -24,8 +20,9 @@ except subprocess.CalledProcessError as e:
|
|
| 24 |
|
| 25 |
# Load the LSTM model
|
| 26 |
model_path = "model.h5" # Set your model path here
|
| 27 |
-
lstm_model = load_lstm_model(model_path)
|
| 28 |
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def clean_text(text):
|
| 31 |
# Remove stopwords
|
|
@@ -57,7 +54,6 @@ def clean_text(text):
|
|
| 57 |
|
| 58 |
return text
|
| 59 |
|
| 60 |
-
|
| 61 |
def preprocess_text(text):
|
| 62 |
# Clean the text
|
| 63 |
cleaned_text = clean_text(text)
|
|
@@ -70,13 +66,8 @@ def preprocess_text(text):
|
|
| 70 |
|
| 71 |
return padded_sequences
|
| 72 |
|
| 73 |
-
# Function to load the saved LSTM model
|
| 74 |
-
@st.cache(allow_output_mutation=True)
|
| 75 |
-
def load_lstm_model(model_path):
|
| 76 |
-
return load_model(model_path)
|
| 77 |
-
|
| 78 |
# Function to predict hate speech
|
| 79 |
-
def predict_hate_speech(text):
|
| 80 |
# Preprocess the text
|
| 81 |
padded_sequences = preprocess_text(text)
|
| 82 |
prediction = lstm_model.predict(padded_sequences)
|
|
@@ -91,6 +82,8 @@ def main():
|
|
| 91 |
|
| 92 |
if st.button("Detect Hate Speech"):
|
| 93 |
if input_text:
|
|
|
|
|
|
|
| 94 |
# Predict hate speech
|
| 95 |
prediction = predict_hate_speech(input_text, lstm_model)
|
| 96 |
if prediction > 0.5:
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from keras.models import load_model
|
|
|
|
|
|
|
| 3 |
import nltk
|
| 4 |
import re
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
from nltk.tokenize import TweetTokenizer
|
|
|
|
| 7 |
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 8 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
|
|
| 9 |
import subprocess
|
| 10 |
|
| 11 |
# Command to execute
|
|
|
|
| 20 |
|
| 21 |
# Load the LSTM model
|
| 22 |
model_path = "model.h5" # Set your model path here
|
|
|
|
| 23 |
|
| 24 |
+
def load_lstm_model(model_path):
|
| 25 |
+
return load_model(model_path)
|
| 26 |
|
| 27 |
def clean_text(text):
|
| 28 |
# Remove stopwords
|
|
|
|
| 54 |
|
| 55 |
return text
|
| 56 |
|
|
|
|
| 57 |
def preprocess_text(text):
|
| 58 |
# Clean the text
|
| 59 |
cleaned_text = clean_text(text)
|
|
|
|
| 66 |
|
| 67 |
return padded_sequences
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
# Function to predict hate speech
|
| 70 |
+
def predict_hate_speech(text, lstm_model):
|
| 71 |
# Preprocess the text
|
| 72 |
padded_sequences = preprocess_text(text)
|
| 73 |
prediction = lstm_model.predict(padded_sequences)
|
|
|
|
| 82 |
|
| 83 |
if st.button("Detect Hate Speech"):
|
| 84 |
if input_text:
|
| 85 |
+
# Load the model
|
| 86 |
+
lstm_model = load_lstm_model(model_path)
|
| 87 |
# Predict hate speech
|
| 88 |
prediction = predict_hate_speech(input_text, lstm_model)
|
| 89 |
if prediction > 0.5:
|