Spaces:
Sleeping
Sleeping
Bug Fixes
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
-
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
| 3 |
|
| 4 |
-
import
|
| 5 |
import torch
|
| 6 |
import torch.nn as nn
|
| 7 |
import torch.nn.functional as F
|
|
@@ -9,9 +8,7 @@ import soundfile as sf
|
|
| 9 |
import torchaudio
|
| 10 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Model
|
| 11 |
import numpy as np
|
| 12 |
-
from pathlib import Path
|
| 13 |
import json
|
| 14 |
-
import tempfile
|
| 15 |
|
| 16 |
# ============================================================
|
| 17 |
# MODEL DEFINITION
|
|
@@ -41,75 +38,22 @@ class Wav2Vec2ForSpeakerEmbedding(nn.Module):
|
|
| 41 |
|
| 42 |
|
| 43 |
# ============================================================
|
| 44 |
-
#
|
| 45 |
# ============================================================
|
| 46 |
|
| 47 |
-
|
| 48 |
-
"""Process uploaded audio file"""
|
| 49 |
-
try:
|
| 50 |
-
# Save uploaded file temporarily
|
| 51 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
| 52 |
-
tmp_file.write(audio_file.getvalue())
|
| 53 |
-
tmp_path = tmp_file.name
|
| 54 |
-
|
| 55 |
-
# Load audio
|
| 56 |
-
waveform, sr = sf.read(tmp_path, dtype='float32')
|
| 57 |
-
waveform = torch.from_numpy(waveform)
|
| 58 |
-
|
| 59 |
-
# Convert to mono
|
| 60 |
-
if len(waveform.shape) > 1:
|
| 61 |
-
waveform = torch.mean(waveform, dim=-1)
|
| 62 |
-
|
| 63 |
-
# Resample to 16kHz
|
| 64 |
-
if sr != 16000:
|
| 65 |
-
resampler = torchaudio.transforms.Resample(sr, 16000)
|
| 66 |
-
waveform = resampler(waveform)
|
| 67 |
-
|
| 68 |
-
# Take middle chunk
|
| 69 |
-
if len(waveform) > max_length:
|
| 70 |
-
start = (len(waveform) - max_length) // 2
|
| 71 |
-
waveform = waveform[start:start + max_length]
|
| 72 |
-
elif len(waveform) < max_length:
|
| 73 |
-
padding = max_length - len(waveform)
|
| 74 |
-
waveform = torch.nn.functional.pad(waveform, (0, padding))
|
| 75 |
-
|
| 76 |
-
# Normalize
|
| 77 |
-
if waveform.abs().max() > 0:
|
| 78 |
-
waveform = waveform / waveform.abs().max()
|
| 79 |
-
|
| 80 |
-
# Extract features
|
| 81 |
-
inputs = feature_extractor(
|
| 82 |
-
waveform.numpy(),
|
| 83 |
-
sampling_rate=16000,
|
| 84 |
-
return_tensors="pt"
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
# Cleanup
|
| 88 |
-
os.unlink(tmp_path)
|
| 89 |
-
|
| 90 |
-
return inputs.input_values, waveform.numpy(), sr
|
| 91 |
-
|
| 92 |
-
except Exception as e:
|
| 93 |
-
st.error(f"Error processing audio: {e}")
|
| 94 |
-
return None, None, None
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
"""Extract embedding from audio file"""
|
| 99 |
-
inputs, waveform, sr = process_audio(audio_file, feature_extractor)
|
| 100 |
-
if inputs is None:
|
| 101 |
-
return None
|
| 102 |
-
|
| 103 |
-
model.eval()
|
| 104 |
-
with torch.no_grad():
|
| 105 |
-
inputs = inputs.to(device)
|
| 106 |
-
embedding = model(inputs)
|
| 107 |
-
|
| 108 |
-
return embedding.cpu().numpy()
|
| 109 |
|
| 110 |
|
| 111 |
# ============================================================
|
| 112 |
-
#
|
| 113 |
# ============================================================
|
| 114 |
|
| 115 |
class EnrollmentDB:
|
|
@@ -135,10 +79,6 @@ class EnrollmentDB:
|
|
| 135 |
self.save_db()
|
| 136 |
|
| 137 |
def verify(self, embedding, threshold=0.75):
|
| 138 |
-
"""
|
| 139 |
-
Verify against all enrolled users
|
| 140 |
-
Returns: (best_match_name, similarity_score, is_verified)
|
| 141 |
-
"""
|
| 142 |
if not self.enrollments:
|
| 143 |
return None, 0.0, False
|
| 144 |
|
|
@@ -156,12 +96,14 @@ class EnrollmentDB:
|
|
| 156 |
best_match = name
|
| 157 |
|
| 158 |
is_verified = best_score >= threshold
|
| 159 |
-
|
| 160 |
return best_match, best_score, is_verified
|
| 161 |
|
| 162 |
def get_all_users(self):
|
| 163 |
return list(self.enrollments.keys())
|
| 164 |
|
|
|
|
|
|
|
|
|
|
| 165 |
def remove_user(self, name):
|
| 166 |
if name in self.enrollments:
|
| 167 |
del self.enrollments[name]
|
|
@@ -169,326 +111,353 @@ class EnrollmentDB:
|
|
| 169 |
return True
|
| 170 |
return False
|
| 171 |
|
|
|
|
|
|
|
| 172 |
|
| 173 |
# ============================================================
|
| 174 |
-
#
|
| 175 |
# ============================================================
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
model.eval()
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
| 190 |
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
-
def
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
layout="wide"
|
| 197 |
-
)
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
<style>
|
| 202 |
-
.big-font {
|
| 203 |
-
font-size:20px !important;
|
| 204 |
-
font-weight: bold;
|
| 205 |
-
}
|
| 206 |
-
.success-box {
|
| 207 |
-
padding: 20px;
|
| 208 |
-
border-radius: 10px;
|
| 209 |
-
background-color: #d4edda;
|
| 210 |
-
border: 2px solid #28a745;
|
| 211 |
-
color: #155724;
|
| 212 |
-
}
|
| 213 |
-
.failure-box {
|
| 214 |
-
padding: 20px;
|
| 215 |
-
border-radius: 10px;
|
| 216 |
-
background-color: #f8d7da;
|
| 217 |
-
border: 2px solid #dc3545;
|
| 218 |
-
color: #721c24;
|
| 219 |
-
}
|
| 220 |
-
.info-box {
|
| 221 |
-
padding: 20px;
|
| 222 |
-
border-radius: 10px;
|
| 223 |
-
background-color: #d1ecf1;
|
| 224 |
-
border: 2px solid #17a2b8;
|
| 225 |
-
color: #0c5460;
|
| 226 |
-
}
|
| 227 |
-
</style>
|
| 228 |
-
""", unsafe_allow_html=True)
|
| 229 |
|
| 230 |
-
|
| 231 |
-
st.title("Voice Biometry System - Proof of Concept")
|
| 232 |
-
st.markdown("### Finetuned Wav2Vec 2.0")
|
| 233 |
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
model, feature_extractor, device = load_model()
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
threshold = st.sidebar.slider(
|
| 244 |
-
"Verification Threshold",
|
| 245 |
-
min_value=0.5,
|
| 246 |
-
max_value=0.95,
|
| 247 |
-
value=0.75,
|
| 248 |
-
step=0.05,
|
| 249 |
-
help="Higher = more strict verification"
|
| 250 |
-
)
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
|
|
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
"User Name",
|
| 284 |
-
placeholder="Enter name (e.g., Abdou Diop)",
|
| 285 |
-
help="This name will be used to identify the speaker"
|
| 286 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
|
|
|
| 293 |
)
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
- Use clear audio
|
| 299 |
-
- 3-20 seconds long
|
| 300 |
-
- Minimal background noise
|
| 301 |
-
- Normal speaking voice
|
| 302 |
-
""")
|
| 303 |
-
|
| 304 |
-
if st.button("🎯 Enroll User", type="primary", disabled=(not enroll_name or not enroll_audio)):
|
| 305 |
-
with st.spinner(f"Processing enrollment for {enroll_name}..."):
|
| 306 |
-
# Check if user already exists
|
| 307 |
-
if enroll_name in db.get_all_users():
|
| 308 |
-
st.warning(f"⚠️ User '{enroll_name}' already exists. Please use a different name or remove the existing user first.")
|
| 309 |
-
else:
|
| 310 |
-
# Get embedding
|
| 311 |
-
embedding = get_embedding(model, enroll_audio, feature_extractor, device)
|
| 312 |
-
|
| 313 |
-
if embedding is not None:
|
| 314 |
-
# Save enrollment
|
| 315 |
-
db.enroll(enroll_name, embedding)
|
| 316 |
-
|
| 317 |
-
st.markdown(f"""
|
| 318 |
-
<div class="success-box">
|
| 319 |
-
<h3>✅ Enrollment Successful!</h3>
|
| 320 |
-
<p><strong>{enroll_name}</strong> has been enrolled in the system.</p>
|
| 321 |
-
<p>Total enrolled users: {len(db.get_all_users())}</p>
|
| 322 |
-
</div>
|
| 323 |
-
""", unsafe_allow_html=True)
|
| 324 |
-
|
| 325 |
-
#st.balloons()
|
| 326 |
-
else:
|
| 327 |
-
st.error("❌ Failed to process audio. Please try again with a different recording.")
|
| 328 |
-
|
| 329 |
-
# ============================================================
|
| 330 |
-
# TAB 2: VERIFICATION
|
| 331 |
-
# ============================================================
|
| 332 |
-
with tab2:
|
| 333 |
-
st.header("Verify User Identity")
|
| 334 |
-
st.markdown("Upload a voice recording to verify against enrolled users.")
|
| 335 |
-
|
| 336 |
-
if not db.get_all_users():
|
| 337 |
-
st.warning("⚠️ No users enrolled yet. Please enroll at least one user first.")
|
| 338 |
-
else:
|
| 339 |
-
col1, col2 = st.columns([2, 1])
|
| 340 |
|
| 341 |
-
with
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
**Verification Info:**
|
| 352 |
-
- {len(db.get_all_users())} users enrolled
|
| 353 |
-
- Threshold: {threshold:.2f}
|
| 354 |
-
- Model: Wav2Vec 2.0
|
| 355 |
-
""")
|
| 356 |
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
if embedding is not None:
|
| 363 |
-
# Verify
|
| 364 |
-
match_name, similarity, is_verified = db.verify(embedding, threshold)
|
| 365 |
-
|
| 366 |
-
# Display results
|
| 367 |
-
st.markdown("---")
|
| 368 |
-
|
| 369 |
-
if is_verified:
|
| 370 |
-
st.markdown(f"""
|
| 371 |
-
<div class="success-box">
|
| 372 |
-
<h2>✅ VERIFICATION SUCCESSFUL</h2>
|
| 373 |
-
<h3>Identified as: {match_name}</h3>
|
| 374 |
-
<p style="font-size: 18px;">Confidence Score: <strong>{similarity:.1%}</strong></p>
|
| 375 |
-
</div>
|
| 376 |
-
""", unsafe_allow_html=True)
|
| 377 |
-
|
| 378 |
-
st.success(f"🎉 Welcome back, {match_name}!")
|
| 379 |
-
|
| 380 |
-
else:
|
| 381 |
-
st.markdown(f"""
|
| 382 |
-
<div class="failure-box">
|
| 383 |
-
<h2>❌ VERIFICATION FAILED</h2>
|
| 384 |
-
<p>Closest match: <strong>{match_name}</strong></p>
|
| 385 |
-
<p>Similarity: <strong>{similarity:.1%}</strong></p>
|
| 386 |
-
<p>Threshold required: <strong>{threshold:.1%}</strong></p>
|
| 387 |
-
<p><em>This speaker is not recognized in the system.</em></p>
|
| 388 |
-
</div>
|
| 389 |
-
""", unsafe_allow_html=True)
|
| 390 |
-
|
| 391 |
-
# Show all scores
|
| 392 |
-
with st.expander("📊 See detailed scores for all enrolled users"):
|
| 393 |
-
st.markdown("### Similarity Scores")
|
| 394 |
-
|
| 395 |
-
scores = []
|
| 396 |
-
embedding_tensor = torch.from_numpy(embedding)
|
| 397 |
-
|
| 398 |
-
for name, enrolled_emb in db.enrollments.items():
|
| 399 |
-
enrolled_tensor = torch.from_numpy(enrolled_emb)
|
| 400 |
-
sim = F.cosine_similarity(embedding_tensor, enrolled_tensor, dim=1).item()
|
| 401 |
-
scores.append({
|
| 402 |
-
'User': name,
|
| 403 |
-
'Similarity': f"{sim:.1%}",
|
| 404 |
-
'Status': '✅ Match' if sim >= threshold else '❌ No match'
|
| 405 |
-
})
|
| 406 |
-
|
| 407 |
-
# Sort by similarity
|
| 408 |
-
scores.sort(key=lambda x: x['Similarity'], reverse=True)
|
| 409 |
-
|
| 410 |
-
import pandas as pd
|
| 411 |
-
df = pd.DataFrame(scores)
|
| 412 |
-
st.dataframe(df, use_container_width=True, hide_index=True)
|
| 413 |
-
|
| 414 |
-
else:
|
| 415 |
-
st.error("❌ Failed to process audio. Please try again with a different recording.")
|
| 416 |
-
|
| 417 |
-
# ============================================================
|
| 418 |
-
# TAB 3: ABOUT
|
| 419 |
-
# ============================================================
|
| 420 |
-
with tab3:
|
| 421 |
-
st.header("About This System")
|
| 422 |
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
| 428 |
|
| 429 |
-
**
|
| 430 |
- Base: Wav2Vec 2.0 (Facebook AI)
|
| 431 |
-
-
|
| 432 |
-
- 1035
|
| 433 |
-
-
|
| 434 |
|
| 435 |
-
**
|
| 436 |
- Loss: Supervised Contrastive Learning
|
| 437 |
- Framework: PyTorch + Transformers
|
| 438 |
-
-
|
| 439 |
-
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
|
| 446 |
-
**
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
""")
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
st.markdown("""
|
| 461 |
-
### 🔧 How It Works
|
| 462 |
-
|
| 463 |
-
1. **Enrollment Phase:**
|
| 464 |
-
- User uploads voice recording
|
| 465 |
-
- System extracts 256-dimensional embedding
|
| 466 |
-
- Embedding stored in database with user name
|
| 467 |
-
|
| 468 |
-
2. **Verification Phase:**
|
| 469 |
-
- Unknown voice recording uploaded
|
| 470 |
-
- System extracts embedding
|
| 471 |
-
- Computes cosine similarity with all enrolled users
|
| 472 |
-
- Returns match if similarity exceeds threshold
|
| 473 |
-
|
| 474 |
-
3. **Matching Algorithm:**
|
| 475 |
-
- Cosine similarity between embeddings
|
| 476 |
-
- Range: -1 (opposite) to +1 (identical)
|
| 477 |
-
- Typical same-speaker: 0.75-0.95
|
| 478 |
-
- Typical different-speaker: 0.30-0.70
|
| 479 |
-
""")
|
| 480 |
-
|
| 481 |
-
st.markdown("---")
|
| 482 |
-
|
| 483 |
-
st.info("""
|
| 484 |
-
**Note:** This is a proof of concept system. For production deployment, consider:
|
| 485 |
-
- Larger training dataset (10-20 samples per speaker)
|
| 486 |
-
- Better base model (WavLM for noisy conditions)
|
| 487 |
-
- Anti-spoofing measures
|
| 488 |
-
- Liveness detection
|
| 489 |
-
- Multi-enrollment (average multiple recordings per user)
|
| 490 |
-
""")
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
if __name__ == "__main__":
|
| 494 |
-
main()
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
| 3 |
+
import gradio as gr
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
| 6 |
import torch.nn.functional as F
|
|
|
|
| 8 |
import torchaudio
|
| 9 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Model
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
import json
|
|
|
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
# MODEL DEFINITION
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
# ============================================================
|
| 41 |
+
# GLOBAL SETUP
|
| 42 |
# ============================================================
|
| 43 |
|
| 44 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Load model
|
| 47 |
+
model = Wav2Vec2ForSpeakerEmbedding(embedding_size=256).to(device)
|
| 48 |
+
checkpoint = torch.load('best_embedding_model.pth', map_location=device)
|
| 49 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 50 |
+
model.eval()
|
| 51 |
|
| 52 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
# ============================================================
|
| 56 |
+
# DATABASE
|
| 57 |
# ============================================================
|
| 58 |
|
| 59 |
class EnrollmentDB:
|
|
|
|
| 79 |
self.save_db()
|
| 80 |
|
| 81 |
def verify(self, embedding, threshold=0.75):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
if not self.enrollments:
|
| 83 |
return None, 0.0, False
|
| 84 |
|
|
|
|
| 96 |
best_match = name
|
| 97 |
|
| 98 |
is_verified = best_score >= threshold
|
|
|
|
| 99 |
return best_match, best_score, is_verified
|
| 100 |
|
| 101 |
def get_all_users(self):
|
| 102 |
return list(self.enrollments.keys())
|
| 103 |
|
| 104 |
+
def get_user_count(self):
|
| 105 |
+
return len(self.enrollments)
|
| 106 |
+
|
| 107 |
def remove_user(self, name):
|
| 108 |
if name in self.enrollments:
|
| 109 |
del self.enrollments[name]
|
|
|
|
| 111 |
return True
|
| 112 |
return False
|
| 113 |
|
| 114 |
+
db = EnrollmentDB()
|
| 115 |
+
|
| 116 |
|
| 117 |
# ============================================================
|
| 118 |
+
# AUDIO PROCESSING
|
| 119 |
# ============================================================
|
| 120 |
|
| 121 |
+
def process_audio(audio_path, max_length=16000*3):
|
| 122 |
+
"""Process audio file"""
|
| 123 |
+
try:
|
| 124 |
+
waveform, sr = sf.read(audio_path, dtype='float32')
|
| 125 |
+
waveform = torch.from_numpy(waveform)
|
| 126 |
+
|
| 127 |
+
if len(waveform.shape) > 1:
|
| 128 |
+
waveform = torch.mean(waveform, dim=-1)
|
| 129 |
+
|
| 130 |
+
if sr != 16000:
|
| 131 |
+
resampler = torchaudio.transforms.Resample(sr, 16000)
|
| 132 |
+
waveform = resampler(waveform)
|
| 133 |
+
|
| 134 |
+
if len(waveform) > max_length:
|
| 135 |
+
start = (len(waveform) - max_length) // 2
|
| 136 |
+
waveform = waveform[start:start + max_length]
|
| 137 |
+
elif len(waveform) < max_length:
|
| 138 |
+
padding = max_length - len(waveform)
|
| 139 |
+
waveform = torch.nn.functional.pad(waveform, (0, padding))
|
| 140 |
+
|
| 141 |
+
if waveform.abs().max() > 0:
|
| 142 |
+
waveform = waveform / waveform.abs().max()
|
| 143 |
+
|
| 144 |
+
inputs = feature_extractor(
|
| 145 |
+
waveform.numpy(),
|
| 146 |
+
sampling_rate=16000,
|
| 147 |
+
return_tensors="pt"
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
return inputs.input_values
|
| 151 |
|
| 152 |
+
except Exception as e:
|
| 153 |
+
raise ValueError(f"Error processing audio: {e}")
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def get_embedding(audio_path):
|
| 157 |
+
"""Extract embedding from audio"""
|
| 158 |
model.eval()
|
| 159 |
+
with torch.no_grad():
|
| 160 |
+
inputs = process_audio(audio_path)
|
| 161 |
+
inputs = inputs.to(device)
|
| 162 |
+
embedding = model(inputs)
|
| 163 |
+
return embedding.cpu().numpy()
|
| 164 |
+
|
| 165 |
|
| 166 |
+
# ============================================================
|
| 167 |
+
# GRADIO FUNCTIONS
|
| 168 |
+
# ============================================================
|
| 169 |
|
| 170 |
+
def enroll_user(name, audio, threshold):
|
| 171 |
+
"""Enroll a new user"""
|
| 172 |
+
if not name or not name.strip():
|
| 173 |
+
return "❌ Veuillez entrer un nom.", get_user_list(), get_stats()
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
if not audio:
|
| 176 |
+
return "❌ Veuillez uploader un enregistrement audio.", get_user_list(), get_stats()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
name = name.strip()
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
if name in db.get_all_users():
|
| 181 |
+
return f"⚠️ L'utilisateur '{name}' existe déjà.", get_user_list(), get_stats()
|
|
|
|
| 182 |
|
| 183 |
+
try:
|
| 184 |
+
embedding = get_embedding(audio)
|
| 185 |
+
db.enroll(name, embedding)
|
| 186 |
+
return f"✅ Enregistrement réussi!\n\n👤 {name} a été enregistré dans le système.\n📊 Total utilisateurs: {db.get_user_count()}", get_user_list(), get_stats()
|
| 187 |
+
except Exception as e:
|
| 188 |
+
return f"❌ Erreur: {str(e)}", get_user_list(), get_stats()
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def verify_user(audio, threshold):
|
| 192 |
+
"""Verify a user"""
|
| 193 |
+
if not audio:
|
| 194 |
+
return "❌ Veuillez uploader un enregistrement audio.", ""
|
| 195 |
|
| 196 |
+
if db.get_user_count() == 0:
|
| 197 |
+
return "⚠️ Aucun utilisateur enregistré. Veuillez d'abord enregistrer des utilisateurs.", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
try:
|
| 200 |
+
embedding = get_embedding(audio)
|
| 201 |
+
match_name, similarity, is_verified = db.verify(embedding, threshold)
|
| 202 |
+
|
| 203 |
+
# Build detailed results
|
| 204 |
+
details = "📊 **Scores détaillés:**\n\n"
|
| 205 |
+
embedding_tensor = torch.from_numpy(embedding)
|
| 206 |
+
|
| 207 |
+
scores = []
|
| 208 |
+
for name, enrolled_emb in db.enrollments.items():
|
| 209 |
+
enrolled_tensor = torch.from_numpy(enrolled_emb)
|
| 210 |
+
sim = F.cosine_similarity(embedding_tensor, enrolled_tensor, dim=1).item()
|
| 211 |
+
status = "✅" if sim >= threshold else "❌"
|
| 212 |
+
scores.append((name, sim, status))
|
| 213 |
+
|
| 214 |
+
scores.sort(key=lambda x: x[1], reverse=True)
|
| 215 |
+
|
| 216 |
+
for name, sim, status in scores:
|
| 217 |
+
details += f"{status} **{name}**: {sim:.1%}\n"
|
| 218 |
+
|
| 219 |
+
if is_verified:
|
| 220 |
+
result = f"""
|
| 221 |
+
# ✅ VÉRIFICATION RÉUSSIE
|
| 222 |
+
|
| 223 |
+
## Identifié comme: **{match_name}**
|
| 224 |
+
### Score de confiance: **{similarity:.1%}**
|
| 225 |
+
|
| 226 |
+
---
|
| 227 |
+
"""
|
| 228 |
+
return result + details, details
|
| 229 |
+
else:
|
| 230 |
+
result = f"""
|
| 231 |
+
# ❌ VÉRIFICATION ÉCHOUÉE
|
| 232 |
+
|
| 233 |
+
Meilleure correspondance: **{match_name}**
|
| 234 |
+
Similarité: **{similarity:.1%}**
|
| 235 |
+
Seuil requis: **{threshold:.1%}**
|
| 236 |
+
|
| 237 |
+
*Cette voix n'est pas reconnue dans le système.*
|
| 238 |
+
|
| 239 |
+
---
|
| 240 |
+
"""
|
| 241 |
+
return result + details, details
|
| 242 |
+
|
| 243 |
+
except Exception as e:
|
| 244 |
+
return f"❌ Erreur: {str(e)}", ""
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def get_user_list():
|
| 248 |
+
"""Get list of enrolled users"""
|
| 249 |
+
users = db.get_all_users()
|
| 250 |
+
if not users:
|
| 251 |
+
return "Aucun utilisateur enregistré"
|
| 252 |
+
return "\n".join([f"• {user}" for user in sorted(users)])
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def get_stats():
|
| 256 |
+
"""Get system statistics"""
|
| 257 |
+
return f"""
|
| 258 |
+
**📊 Statistiques du système:**
|
| 259 |
+
- Utilisateurs enregistrés: {db.get_user_count()}
|
| 260 |
+
- Précision du modèle: 76%
|
| 261 |
+
- Score AUC: 0.82
|
| 262 |
+
- Architecture: Wav2Vec 2.0
|
| 263 |
+
"""
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def delete_user(name):
|
| 267 |
+
"""Delete a user"""
|
| 268 |
+
if not name or not name.strip():
|
| 269 |
+
return "❌ Veuillez sélectionner un utilisateur.", get_user_list(), get_stats()
|
| 270 |
|
| 271 |
+
if db.remove_user(name.strip()):
|
| 272 |
+
return f"✅ Utilisateur '{name}' supprimé.", get_user_list(), get_stats()
|
| 273 |
+
else:
|
| 274 |
+
return f"❌ Utilisateur '{name}' non trouvé.", get_user_list(), get_stats()
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
# ============================================================
|
| 278 |
+
# GRADIO INTERFACE
|
| 279 |
+
# ============================================================
|
| 280 |
+
|
| 281 |
+
with gr.Blocks(title="Biométrie Vocale - POC", theme=gr.themes.Soft()) as demo:
|
| 282 |
|
| 283 |
+
gr.Markdown("""
|
| 284 |
+
# 🎤 Système de Biométrie Vocale
|
| 285 |
+
### Proof of Concept - Wav2Vec 2.0 Fine-tuné
|
| 286 |
+
""")
|
| 287 |
|
| 288 |
+
with gr.Row():
|
| 289 |
+
with gr.Column(scale=2):
|
| 290 |
+
stats_display = gr.Markdown(get_stats())
|
| 291 |
+
with gr.Column(scale=1):
|
| 292 |
+
threshold = gr.Slider(
|
| 293 |
+
minimum=0.5,
|
| 294 |
+
maximum=0.95,
|
| 295 |
+
value=0.75,
|
| 296 |
+
step=0.05,
|
| 297 |
+
label="Seuil de vérification",
|
| 298 |
+
info="Plus élevé = vérification plus stricte"
|
|
|
|
|
|
|
|
|
|
| 299 |
)
|
| 300 |
+
|
| 301 |
+
with gr.Tabs():
|
| 302 |
+
# TAB 1: ENROLLMENT
|
| 303 |
+
with gr.Tab("📝 Enregistrement"):
|
| 304 |
+
gr.Markdown("### Enregistrer un nouvel utilisateur")
|
| 305 |
+
|
| 306 |
+
with gr.Row():
|
| 307 |
+
with gr.Column():
|
| 308 |
+
enroll_name_input = gr.Textbox(
|
| 309 |
+
label="Nom de l'utilisateur",
|
| 310 |
+
placeholder="Ex: Jean Dupont"
|
| 311 |
+
)
|
| 312 |
+
enroll_audio_input = gr.Audio(
|
| 313 |
+
label="Enregistrement vocal",
|
| 314 |
+
type="filepath",
|
| 315 |
+
sources=["upload", "microphone"]
|
| 316 |
+
)
|
| 317 |
+
enroll_button = gr.Button("🎯 Enregistrer", variant="primary")
|
| 318 |
+
|
| 319 |
+
with gr.Column():
|
| 320 |
+
gr.Markdown("""
|
| 321 |
+
**💡 Conseils:**
|
| 322 |
+
- Audio clair et net
|
| 323 |
+
- 3-20 secondes recommandées
|
| 324 |
+
- Bruit de fond minimal
|
| 325 |
+
- Voix normale
|
| 326 |
+
""")
|
| 327 |
+
enrolled_users = gr.Textbox(
|
| 328 |
+
label="Utilisateurs enregistrés",
|
| 329 |
+
value=get_user_list(),
|
| 330 |
+
lines=8,
|
| 331 |
+
interactive=False
|
| 332 |
+
)
|
| 333 |
|
| 334 |
+
enroll_output = gr.Markdown()
|
| 335 |
+
|
| 336 |
+
enroll_button.click(
|
| 337 |
+
fn=enroll_user,
|
| 338 |
+
inputs=[enroll_name_input, enroll_audio_input, threshold],
|
| 339 |
+
outputs=[enroll_output, enrolled_users, stats_display]
|
| 340 |
)
|
| 341 |
|
| 342 |
+
# TAB 2: VERIFICATION
|
| 343 |
+
with gr.Tab("✅ Vérification"):
|
| 344 |
+
gr.Markdown("### Vérifier l'identité d'un utilisateur")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
+
with gr.Row():
|
| 347 |
+
with gr.Column():
|
| 348 |
+
verify_audio_input = gr.Audio(
|
| 349 |
+
label="Enregistrement vocal à vérifier",
|
| 350 |
+
type="filepath",
|
| 351 |
+
sources=["upload", "microphone"]
|
| 352 |
+
)
|
| 353 |
+
verify_button = gr.Button("🔍 Vérifier", variant="primary")
|
| 354 |
+
|
| 355 |
+
with gr.Column():
|
| 356 |
+
gr.Markdown(f"""
|
| 357 |
+
**ℹ️ Information:**
|
| 358 |
+
- {db.get_user_count()} utilisateur(s) enregistré(s)
|
| 359 |
+
- Seuil: ajustable dans le slider ci-dessus
|
| 360 |
+
- Modèle: Wav2Vec 2.0
|
| 361 |
+
""")
|
| 362 |
|
| 363 |
+
verify_output = gr.Markdown()
|
| 364 |
+
verify_details = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
+
verify_button.click(
|
| 367 |
+
fn=verify_user,
|
| 368 |
+
inputs=[verify_audio_input, threshold],
|
| 369 |
+
outputs=[verify_output, verify_details]
|
| 370 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
+
# TAB 3: MANAGEMENT
|
| 373 |
+
with gr.Tab("⚙️ Gestion"):
|
| 374 |
+
gr.Markdown("### Gérer les utilisateurs enregistrés")
|
| 375 |
+
|
| 376 |
+
with gr.Row():
|
| 377 |
+
with gr.Column():
|
| 378 |
+
delete_name_input = gr.Textbox(
|
| 379 |
+
label="Nom de l'utilisateur à supprimer",
|
| 380 |
+
placeholder="Ex: Jean Dupont"
|
| 381 |
+
)
|
| 382 |
+
delete_button = gr.Button("🗑️ Supprimer", variant="stop")
|
| 383 |
+
|
| 384 |
+
with gr.Column():
|
| 385 |
+
delete_users_list = gr.Textbox(
|
| 386 |
+
label="Utilisateurs enregistrés",
|
| 387 |
+
value=get_user_list(),
|
| 388 |
+
lines=8,
|
| 389 |
+
interactive=False
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
delete_output = gr.Markdown()
|
| 393 |
+
|
| 394 |
+
delete_button.click(
|
| 395 |
+
fn=delete_user,
|
| 396 |
+
inputs=[delete_name_input],
|
| 397 |
+
outputs=[delete_output, delete_users_list, stats_display]
|
| 398 |
+
)
|
| 399 |
|
| 400 |
+
# TAB 4: ABOUT
|
| 401 |
+
with gr.Tab("ℹ️ À propos"):
|
| 402 |
+
gr.Markdown("""
|
| 403 |
+
## 🎯 Technologie
|
| 404 |
|
| 405 |
+
**Architecture du modèle:**
|
| 406 |
- Base: Wav2Vec 2.0 (Facebook AI)
|
| 407 |
+
- Fine-tuné sur 247 locuteurs
|
| 408 |
+
- 1035 échantillons vocaux (qualité téléphonique, 8kHz)
|
| 409 |
+
- Dimension d'embedding: 256
|
| 410 |
|
| 411 |
+
**Détails d'entraînement:**
|
| 412 |
- Loss: Supervised Contrastive Learning
|
| 413 |
- Framework: PyTorch + Transformers
|
| 414 |
+
- Durée d'entraînement: ~50 epochs
|
| 415 |
+
- Matériel: NVIDIA RTX 3050
|
| 416 |
+
|
| 417 |
+
---
|
| 418 |
+
|
| 419 |
+
## 📊 Métriques de Performance
|
| 420 |
+
|
| 421 |
+
**Résultats d'évaluation:**
|
| 422 |
+
- **Précision:** 76%
|
| 423 |
+
- **Score AUC:** 0.82
|
| 424 |
+
- **Taux de vrais positifs:** 79%
|
| 425 |
+
- **Taux de faux positifs:** 27%
|
| 426 |
+
|
| 427 |
+
**Ensemble de test:**
|
| 428 |
+
- 1000 paires de vérification
|
| 429 |
+
- 500 paires même locuteur
|
| 430 |
+
- 500 paires locuteurs différents
|
| 431 |
+
|
| 432 |
+
---
|
| 433 |
+
|
| 434 |
+
## 🔧 Fonctionnement
|
| 435 |
+
|
| 436 |
+
1. **Phase d'enregistrement:**
|
| 437 |
+
- L'utilisateur uploade un enregistrement vocal
|
| 438 |
+
- Le système extrait un embedding de dimension 256
|
| 439 |
+
- L'embedding est stocké dans la base de données
|
| 440 |
+
|
| 441 |
+
2. **Phase de vérification:**
|
| 442 |
+
- Enregistrement vocal inconnu uploadé
|
| 443 |
+
- Le système extrait l'embedding
|
| 444 |
+
- Calcul de similarité cosinus avec tous les utilisateurs enregistrés
|
| 445 |
+
- Correspondance si similarité > seuil
|
| 446 |
|
| 447 |
+
3. **Algorithme de correspondance:**
|
| 448 |
+
- Similarité cosinus entre embeddings
|
| 449 |
+
- Plage: -1 (opposé) à +1 (identique)
|
| 450 |
+
- Même locuteur typique: 0.75-0.95
|
| 451 |
+
- Locuteurs différents typique: 0.30-0.70
|
| 452 |
|
| 453 |
+
---
|
| 454 |
+
|
| 455 |
+
**Note:** Ceci est un système proof of concept. Pour un déploiement en production, considérer:
|
| 456 |
+
- Dataset plus large (10-20 échantillons par locuteur)
|
| 457 |
+
- Meilleur modèle de base (WavLM pour conditions bruitées)
|
| 458 |
+
- Mesures anti-spoofing
|
| 459 |
+
- Détection de vivacité
|
| 460 |
+
- Multi-enregistrement (moyenne de plusieurs enregistrements par utilisateur)
|
| 461 |
""")
|
| 462 |
+
|
| 463 |
+
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|