Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -44,6 +44,9 @@ EMU_GEN_HUB = "BAAI/Emu3-Gen"
|
|
| 44 |
EMU_CHAT_HUB = "BAAI/Emu3-Chat"
|
| 45 |
VQ_HUB = "BAAI/Emu3-VisionTokenizer"
|
| 46 |
|
|
|
|
|
|
|
|
|
|
| 47 |
# Prepare models and processors
|
| 48 |
# Emu3-Gen model and processor
|
| 49 |
gen_model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -54,15 +57,6 @@ gen_model = AutoModelForCausalLM.from_pretrained(
|
|
| 54 |
trust_remote_code=True,
|
| 55 |
)
|
| 56 |
|
| 57 |
-
# Emu3-Chat model and processor
|
| 58 |
-
chat_model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
-
EMU_CHAT_HUB,
|
| 60 |
-
device_map="cpu",
|
| 61 |
-
torch_dtype=torch.bfloat16,
|
| 62 |
-
attn_implementation="flash_attention_2",
|
| 63 |
-
trust_remote_code=True,
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
|
| 67 |
image_processor = AutoImageProcessor.from_pretrained(
|
| 68 |
VQ_HUB, trust_remote_code=True
|
|
@@ -70,16 +64,16 @@ image_processor = AutoImageProcessor.from_pretrained(
|
|
| 70 |
image_tokenizer = AutoModel.from_pretrained(
|
| 71 |
VQ_HUB, device_map="cpu", trust_remote_code=True
|
| 72 |
).eval()
|
| 73 |
-
processor = Emu3Processor(
|
| 74 |
-
image_processor, image_tokenizer, tokenizer
|
| 75 |
-
)
|
| 76 |
|
| 77 |
print(device)
|
| 78 |
gen_model.to(device)
|
| 79 |
-
chat_model.to(device)
|
| 80 |
image_tokenizer.to(device)
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
def generate_image(prompt):
|
| 84 |
POSITIVE_PROMPT = " masterpiece, film grained, best quality."
|
| 85 |
NEGATIVE_PROMPT = (
|
|
@@ -139,6 +133,48 @@ def generate_image(prompt):
|
|
| 139 |
return im
|
| 140 |
return None
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
@spaces.GPU
|
| 143 |
def vision_language_understanding(image, text):
|
| 144 |
inputs = processor(
|
|
@@ -176,19 +212,8 @@ def chat(history, user_input, user_image):
|
|
| 176 |
# Append the user input and response to the history
|
| 177 |
history = history + [(image2str(user_image) + "<br>" + user_input, response)]
|
| 178 |
else:
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
# Use Emu3-Gen for image generation
|
| 182 |
-
generated_image = generate_image(user_input)
|
| 183 |
-
if generated_image is not None:
|
| 184 |
-
# Append the user input and generated image to the history
|
| 185 |
-
history = history + [(user_input, image2str(generated_image))]
|
| 186 |
-
else:
|
| 187 |
-
# If image generation failed, respond with an error message
|
| 188 |
-
history = history + [
|
| 189 |
-
(user_input, "Sorry, I could not generate an image.")
|
| 190 |
-
]
|
| 191 |
-
# """
|
| 192 |
return history, history, gr.update(value=None)
|
| 193 |
|
| 194 |
def clear_input():
|
|
|
|
| 44 |
EMU_CHAT_HUB = "BAAI/Emu3-Chat"
|
| 45 |
VQ_HUB = "BAAI/Emu3-VisionTokenizer"
|
| 46 |
|
| 47 |
+
|
| 48 |
+
# uncomment to use gen model
|
| 49 |
+
"""
|
| 50 |
# Prepare models and processors
|
| 51 |
# Emu3-Gen model and processor
|
| 52 |
gen_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 57 |
trust_remote_code=True,
|
| 58 |
)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
|
| 61 |
image_processor = AutoImageProcessor.from_pretrained(
|
| 62 |
VQ_HUB, trust_remote_code=True
|
|
|
|
| 64 |
image_tokenizer = AutoModel.from_pretrained(
|
| 65 |
VQ_HUB, device_map="cpu", trust_remote_code=True
|
| 66 |
).eval()
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
print(device)
|
| 69 |
gen_model.to(device)
|
|
|
|
| 70 |
image_tokenizer.to(device)
|
| 71 |
|
| 72 |
+
processor = Emu3Processor(
|
| 73 |
+
image_processor, image_tokenizer, tokenizer
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
@spaces.GPU(duration=300)
|
| 77 |
def generate_image(prompt):
|
| 78 |
POSITIVE_PROMPT = " masterpiece, film grained, best quality."
|
| 79 |
NEGATIVE_PROMPT = (
|
|
|
|
| 133 |
return im
|
| 134 |
return None
|
| 135 |
|
| 136 |
+
def chat(history, user_input, user_image):
|
| 137 |
+
if user_image is not None:
|
| 138 |
+
history = history + [("", "Sorry, gen model do not accept image input")]
|
| 139 |
+
else:
|
| 140 |
+
# Use Emu3-Gen for image generation
|
| 141 |
+
generated_image = generate_image(user_input)
|
| 142 |
+
if generated_image is not None:
|
| 143 |
+
# Append the user input and generated image to the history
|
| 144 |
+
history = history + [(user_input, image2str(generated_image))]
|
| 145 |
+
else:
|
| 146 |
+
# If image generation failed, respond with an error message
|
| 147 |
+
history = history + [
|
| 148 |
+
(user_input, "Sorry, I could not generate an image.")
|
| 149 |
+
]
|
| 150 |
+
return history, history, gr.update(value=None)
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
# Emu3-Chat model and processor
|
| 154 |
+
chat_model = AutoModelForCausalLM.from_pretrained(
|
| 155 |
+
EMU_CHAT_HUB,
|
| 156 |
+
device_map="cpu",
|
| 157 |
+
torch_dtype=torch.bfloat16,
|
| 158 |
+
attn_implementation="flash_attention_2",
|
| 159 |
+
trust_remote_code=True,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
tokenizer = AutoTokenizer.from_pretrained(EMU_CHAT_HUB, trust_remote_code=True)
|
| 163 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
| 164 |
+
VQ_HUB, trust_remote_code=True
|
| 165 |
+
)
|
| 166 |
+
image_tokenizer = AutoModel.from_pretrained(
|
| 167 |
+
VQ_HUB, device_map="cpu", trust_remote_code=True
|
| 168 |
+
).eval()
|
| 169 |
+
|
| 170 |
+
print(device)
|
| 171 |
+
chat_model.to(device)
|
| 172 |
+
image_tokenizer.to(device)
|
| 173 |
+
|
| 174 |
+
processor = Emu3Processor(
|
| 175 |
+
image_processor, image_tokenizer, tokenizer
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
@spaces.GPU
|
| 179 |
def vision_language_understanding(image, text):
|
| 180 |
inputs = processor(
|
|
|
|
| 212 |
# Append the user input and response to the history
|
| 213 |
history = history + [(image2str(user_image) + "<br>" + user_input, response)]
|
| 214 |
else:
|
| 215 |
+
history = history + [(user_input, "Sorry, please specify a valid image for vl understanding.")]
|
| 216 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
return history, history, gr.update(value=None)
|
| 218 |
|
| 219 |
def clear_input():
|