Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,76 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
if
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import AutoTokenizer, OPTForCausalLM
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@st.cache_resource
|
| 7 |
+
def load_model():
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-30b")
|
| 9 |
+
model = OPTForCausalLM.from_pretrained("facebook/galactica-30b", device_map='auto', low_cpu_mem_usage=True, torch_dtype=torch.float16)
|
| 10 |
+
model.gradient_checkpointing_enable()
|
| 11 |
+
return tokenizer, model
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
st.set_page_config(
|
| 15 |
+
page_title='BioML-SVM',
|
| 16 |
+
layout="wide"
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
with st.spinner("Loading Models and Tokens..."):
|
| 20 |
+
tokenizer, model = load_model()
|
| 21 |
+
|
| 22 |
+
with st.form(key='my_form'):
|
| 23 |
+
col1, col2 = st.columns([10, 1])
|
| 24 |
+
text_input = col1.text_input(label='Enter the amino sequence')
|
| 25 |
+
with col2:
|
| 26 |
+
st.text('')
|
| 27 |
+
st.text('')
|
| 28 |
+
submit_button = st.form_submit_button(label='Submit')
|
| 29 |
+
|
| 30 |
+
if submit_button:
|
| 31 |
+
st.session_state['result_done'] = False
|
| 32 |
+
# input_text = "[START_AMINO]GHMQSITAGQKVISKHKNGRFYQCEVVRLTTETFYEVNFDDGSFSDNLYPEDIVSQDCLQFGPPAEGEVVQVRWTDGQVYGAKFVASHPIQMYQVEFEDGSQLVVKRDDVYTLDEELP[END_AMINO]"
|
| 33 |
+
with st.spinner('Generating...'):
|
| 34 |
+
# formatted_text = f"[START_AMINO]{text_input}[END_AMINO]"
|
| 35 |
+
# formatted_text = f"Here is the sequence: [START_AMINO]{text_input}[END_AMINO]"
|
| 36 |
+
formatted_text = f"{text_input}"
|
| 37 |
+
input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda")
|
| 38 |
+
outputs = model.generate(
|
| 39 |
+
input_ids=input_ids,
|
| 40 |
+
max_new_tokens=500
|
| 41 |
+
)
|
| 42 |
+
result = tokenizer.decode(outputs[0]).replace(formatted_text, "")
|
| 43 |
+
st.markdown(result)
|
| 44 |
+
|
| 45 |
+
if 'result_done' not in st.session_state or not st.session_state.result_done:
|
| 46 |
+
st.session_state['result_done'] = True
|
| 47 |
+
st.session_state['previous_state'] = result
|
| 48 |
+
else:
|
| 49 |
+
if 'result_done' in st.session_state and st.session_state.result_done:
|
| 50 |
+
st.markdown(st.session_state.previous_state)
|
| 51 |
+
|
| 52 |
+
if 'result_done' in st.session_state and st.session_state.result_done:
|
| 53 |
+
with st.form(key='ask_more'):
|
| 54 |
+
col1, col2 = st.columns([10, 1])
|
| 55 |
+
text_input = col1.text_input(label='Ask more question')
|
| 56 |
+
with col2:
|
| 57 |
+
st.text('')
|
| 58 |
+
st.text('')
|
| 59 |
+
submit_button = st.form_submit_button(label='Submit')
|
| 60 |
+
|
| 61 |
+
if submit_button:
|
| 62 |
+
with st.spinner('Generating...'):
|
| 63 |
+
# formatted_text = f"[START_AMINO]{text_input}[END_AMINO]"
|
| 64 |
+
formatted_text = f"Q:{text_input}\n\nA:\n\n"
|
| 65 |
+
input_ids = tokenizer(formatted_text, return_tensors="pt").input_ids.to("cuda")
|
| 66 |
+
|
| 67 |
+
outputs = model.generate(
|
| 68 |
+
input_ids=input_ids,
|
| 69 |
+
max_length=len(formatted_text) + 500,
|
| 70 |
+
do_sample=True,
|
| 71 |
+
top_k=40,
|
| 72 |
+
num_beams=1,
|
| 73 |
+
num_return_sequences=1
|
| 74 |
+
)
|
| 75 |
+
result = tokenizer.decode(outputs[0]).replace(formatted_text, "")
|
| 76 |
+
st.markdown(result)
|