Spaces:
Runtime error
Runtime error
Commit
Β·
53fe34a
1
Parent(s):
a552ae2
Upload 2 files
Browse files- best_model.pth +3 -0
- proteinbind_new.py +282 -0
best_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f04226a7bfc5cbb097348fa4f721a1d0da1b3aa248062ddef43136ff4ece1673
|
| 3 |
+
size 52399787
|
proteinbind_new.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from types import SimpleNamespace
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch.utils.data import Dataset
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
ModalityType = SimpleNamespace(
|
| 10 |
+
AA="aa",
|
| 11 |
+
DNA="dna",
|
| 12 |
+
PDB="pdb",
|
| 13 |
+
GO="go",
|
| 14 |
+
MSA="msa",
|
| 15 |
+
TEXT="text",
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
class Normalize(nn.Module):
|
| 19 |
+
def __init__(self, dim: int) -> None:
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.dim = dim
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
return torch.nn.functional.normalize(x, dim=self.dim, p=2)
|
| 25 |
+
|
| 26 |
+
class EmbeddingDataset(Dataset):
|
| 27 |
+
"""
|
| 28 |
+
The main class for turning any modality to a torch Dataset that can be passed to
|
| 29 |
+
a torch dataloader. Any modality that doesn't fit into the __getitem__
|
| 30 |
+
method can subclass this and modify the __getitem__ method.
|
| 31 |
+
"""
|
| 32 |
+
def __init__(self, sequence_file_path, embeddings_file_path, modality):
|
| 33 |
+
self.sequence = pd.read_csv(sequence_file_path)
|
| 34 |
+
self.embedding = torch.load(embeddings_file_path)
|
| 35 |
+
self.modality = modality
|
| 36 |
+
|
| 37 |
+
def __len__(self):
|
| 38 |
+
return len(self.sequence)
|
| 39 |
+
|
| 40 |
+
def __getitem__(self, idx):
|
| 41 |
+
sequence = self.sequence.iloc[idx, 0]
|
| 42 |
+
embedding = self.embedding[idx]
|
| 43 |
+
return {"aa": sequence, self.modality: embedding}
|
| 44 |
+
|
| 45 |
+
class DualEmbeddingDataset(Dataset):
|
| 46 |
+
"""
|
| 47 |
+
The main class for turning any modality to a torch Dataset that can be passed to
|
| 48 |
+
a torch dataloader. Any modality that doesn't fit into the __getitem__
|
| 49 |
+
method can subclass this and modify the __getitem__ method.
|
| 50 |
+
"""
|
| 51 |
+
def __init__(self, sequence_embeddings_file_path, embeddings_file_path, modality):
|
| 52 |
+
self.sequence_embedding = torch.load(sequence_embeddings_file_path)
|
| 53 |
+
self.embedding = torch.load(embeddings_file_path)
|
| 54 |
+
self.modality = modality
|
| 55 |
+
|
| 56 |
+
def __len__(self):
|
| 57 |
+
return len(self.sequence_embedding)
|
| 58 |
+
|
| 59 |
+
def __getitem__(self, idx):
|
| 60 |
+
sequence_embedding = self.sequence_embedding[idx]
|
| 61 |
+
embedding = self.embedding[idx]
|
| 62 |
+
return {"aa": sequence_embedding, self.modality: embedding}
|
| 63 |
+
|
| 64 |
+
class ProteinBindModel(nn.Module):
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
aa_embed_dim,
|
| 69 |
+
dna_embed_dim,
|
| 70 |
+
pdb_embed_dim,
|
| 71 |
+
go_embed_dim,
|
| 72 |
+
msa_embed_dim,
|
| 73 |
+
text_embed_dim,
|
| 74 |
+
in_embed_dim,
|
| 75 |
+
out_embed_dim
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.modality_trunks = self._create_modality_trunk(
|
| 79 |
+
aa_embed_dim,
|
| 80 |
+
dna_embed_dim,
|
| 81 |
+
pdb_embed_dim,
|
| 82 |
+
go_embed_dim,
|
| 83 |
+
msa_embed_dim,
|
| 84 |
+
text_embed_dim,
|
| 85 |
+
out_embed_dim
|
| 86 |
+
)
|
| 87 |
+
self.modality_heads = self._create_modality_head(
|
| 88 |
+
in_embed_dim,
|
| 89 |
+
out_embed_dim,
|
| 90 |
+
)
|
| 91 |
+
self.modality_postprocessors = self._create_modality_postprocessors(
|
| 92 |
+
out_embed_dim
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _create_modality_trunk(
|
| 97 |
+
self,
|
| 98 |
+
aa_embed_dim,
|
| 99 |
+
dna_embed_dim,
|
| 100 |
+
pdb_embed_dim,
|
| 101 |
+
go_embed_dim,
|
| 102 |
+
msa_embed_dim,
|
| 103 |
+
text_embed_dim,
|
| 104 |
+
in_embed_dim
|
| 105 |
+
):
|
| 106 |
+
"""
|
| 107 |
+
The current layers are just a proof of concept
|
| 108 |
+
and are subject to the opinion of others.
|
| 109 |
+
:param aa_embed_dim:
|
| 110 |
+
:param dna_embed_dim:
|
| 111 |
+
:param pdb_embed_dim:
|
| 112 |
+
:param go_embed_dim:
|
| 113 |
+
:param msa_embed_dim:
|
| 114 |
+
:param text_embed_dim:
|
| 115 |
+
:param in_embed_dim:
|
| 116 |
+
:return:
|
| 117 |
+
"""
|
| 118 |
+
modality_trunks = {}
|
| 119 |
+
|
| 120 |
+
modality_trunks[ModalityType.AA] = nn.Sequential(
|
| 121 |
+
nn.Linear(aa_embed_dim, 512),
|
| 122 |
+
nn.ReLU(),
|
| 123 |
+
nn.Linear(512, 512),
|
| 124 |
+
nn.ReLU(),
|
| 125 |
+
nn.Linear(512, in_embed_dim),
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
modality_trunks[ModalityType.DNA] = nn.Sequential(
|
| 129 |
+
nn.Linear(dna_embed_dim, 512),
|
| 130 |
+
nn.ReLU(),
|
| 131 |
+
nn.Linear(512, 512),
|
| 132 |
+
nn.ReLU(),
|
| 133 |
+
nn.Linear(512, in_embed_dim),
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
modality_trunks[ModalityType.PDB] = nn.Sequential(
|
| 137 |
+
nn.Linear(pdb_embed_dim, 512),
|
| 138 |
+
nn.ReLU(),
|
| 139 |
+
nn.Linear(512, 512),
|
| 140 |
+
nn.ReLU(),
|
| 141 |
+
nn.Linear(512, in_embed_dim),
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
modality_trunks[ModalityType.GO] = nn.Sequential(
|
| 145 |
+
nn.Linear(go_embed_dim, 512),
|
| 146 |
+
nn.ReLU(),
|
| 147 |
+
nn.Linear(512, 512),
|
| 148 |
+
nn.ReLU(),
|
| 149 |
+
nn.Linear(512, in_embed_dim),
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
modality_trunks[ModalityType.MSA] = nn.Sequential(
|
| 153 |
+
nn.Linear(msa_embed_dim, 512),
|
| 154 |
+
nn.ReLU(),
|
| 155 |
+
nn.Linear(512, 512),
|
| 156 |
+
nn.ReLU(),
|
| 157 |
+
nn.Linear(512, in_embed_dim),
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
modality_trunks[ModalityType.TEXT] = nn.Sequential(
|
| 161 |
+
nn.Linear(text_embed_dim, 512),
|
| 162 |
+
nn.ReLU(),
|
| 163 |
+
nn.Linear(512, 512),
|
| 164 |
+
nn.ReLU(),
|
| 165 |
+
nn.Linear(512, in_embed_dim),
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return nn.ModuleDict(modality_trunks)
|
| 169 |
+
|
| 170 |
+
def _create_modality_head(
|
| 171 |
+
self,
|
| 172 |
+
in_embed_dim,
|
| 173 |
+
out_embed_dim
|
| 174 |
+
):
|
| 175 |
+
modality_heads = {}
|
| 176 |
+
|
| 177 |
+
modality_heads[ModalityType.AA] = nn.Sequential(
|
| 178 |
+
nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
|
| 179 |
+
nn.Dropout(p=0.5),
|
| 180 |
+
nn.Linear(in_embed_dim, out_embed_dim, bias=False),
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
modality_heads[ModalityType.DNA] = nn.Sequential(
|
| 184 |
+
nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
|
| 185 |
+
nn.Dropout(p=0.5),
|
| 186 |
+
nn.Linear(in_embed_dim, out_embed_dim, bias=False),
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
modality_heads[ModalityType.PDB] = nn.Sequential(
|
| 190 |
+
nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
|
| 191 |
+
nn.Dropout(p=0.5),
|
| 192 |
+
nn.Linear(in_embed_dim, out_embed_dim, bias=False),
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
modality_heads[ModalityType.GO] = nn.Sequential(
|
| 196 |
+
nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
|
| 197 |
+
nn.Dropout(p=0.5),
|
| 198 |
+
nn.Linear(in_embed_dim, out_embed_dim, bias=False),
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
modality_heads[ModalityType.MSA] = nn.Sequential(
|
| 202 |
+
nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
|
| 203 |
+
nn.Dropout(p=0.5),
|
| 204 |
+
nn.Linear(in_embed_dim, out_embed_dim, bias=False),
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
modality_heads[ModalityType.TEXT] = nn.Sequential(
|
| 208 |
+
nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
|
| 209 |
+
nn.Dropout(p=0.5),
|
| 210 |
+
nn.Linear(in_embed_dim, out_embed_dim, bias=False),
|
| 211 |
+
)
|
| 212 |
+
return nn.ModuleDict(modality_heads)
|
| 213 |
+
|
| 214 |
+
def _create_modality_postprocessors(self, out_embed_dim):
|
| 215 |
+
modality_postprocessors = {}
|
| 216 |
+
modality_postprocessors[ModalityType.AA] = Normalize(dim=-1)
|
| 217 |
+
modality_postprocessors[ModalityType.DNA] = Normalize(dim=-1)
|
| 218 |
+
modality_postprocessors[ModalityType.PDB] = Normalize(dim=-1)
|
| 219 |
+
modality_postprocessors[ModalityType.TEXT] = Normalize(dim=-1)
|
| 220 |
+
modality_postprocessors[ModalityType.GO] = Normalize(dim=-1)
|
| 221 |
+
modality_postprocessors[ModalityType.MSA] = Normalize(dim=-1)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
return nn.ModuleDict(modality_postprocessors)
|
| 225 |
+
|
| 226 |
+
def forward(self, inputs):
|
| 227 |
+
"""
|
| 228 |
+
input = {k_1: [v],k_n: [v]}
|
| 229 |
+
for key in input
|
| 230 |
+
get trunk for key
|
| 231 |
+
forward pass of value in trunk
|
| 232 |
+
get projection head of key
|
| 233 |
+
forward pass of value in projection head
|
| 234 |
+
append output in output dict
|
| 235 |
+
return { k_1, [o], k_n: [o]}
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
outputs = {}
|
| 239 |
+
|
| 240 |
+
for modality_key, modality_value in inputs.items():
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
modality_value = self.modality_trunks[modality_key](
|
| 244 |
+
modality_value
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
modality_value = self.modality_heads[modality_key](
|
| 248 |
+
modality_value
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
modality_value = self.modality_postprocessors[modality_key](
|
| 252 |
+
modality_value
|
| 253 |
+
)
|
| 254 |
+
outputs[modality_key] = modality_value
|
| 255 |
+
|
| 256 |
+
return outputs
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def create_proteinbind(pretrained=False):
|
| 260 |
+
"""
|
| 261 |
+
The embedding dimensions here are dummy
|
| 262 |
+
:param pretrained:
|
| 263 |
+
:return:
|
| 264 |
+
"""
|
| 265 |
+
model = ProteinBindModel(
|
| 266 |
+
aa_embed_dim=480,
|
| 267 |
+
dna_embed_dim=1280,
|
| 268 |
+
pdb_embed_dim=128,
|
| 269 |
+
go_embed_dim=600,
|
| 270 |
+
msa_embed_dim=768,
|
| 271 |
+
text_embed_dim=768,
|
| 272 |
+
in_embed_dim=1024,
|
| 273 |
+
out_embed_dim=1024
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
if pretrained:
|
| 277 |
+
#get path from config
|
| 278 |
+
PATH = 'best_model.pth'
|
| 279 |
+
|
| 280 |
+
model.load_state_dict(torch.load(PATH))
|
| 281 |
+
|
| 282 |
+
return model
|