File size: 9,208 Bytes
0a376a0
3d88604
da53b6a
 
 
 
 
6260d7d
7220f5b
 
 
 
3d88604
da53b6a
3d88604
0a376a0
7220f5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a376a0
da53b6a
 
3f0edbb
da53b6a
 
3d88604
 
da53b6a
 
3d88604
da53b6a
3d88604
da53b6a
 
 
 
3d88604
da53b6a
 
3d88604
 
da53b6a
 
 
 
 
 
 
 
3d88604
 
 
 
 
 
 
 
10107b2
da53b6a
 
 
 
 
 
 
 
 
 
 
3d88604
da53b6a
 
 
 
3d88604
da53b6a
 
 
 
 
3d88604
da53b6a
3d88604
da53b6a
3d88604
 
 
 
 
 
 
 
 
 
 
 
da53b6a
 
 
 
 
 
 
 
 
 
3d88604
da53b6a
3d88604
da53b6a
3d88604
 
 
da53b6a
 
 
3d88604
da53b6a
3d88604
 
da53b6a
 
 
 
3d88604
 
 
da53b6a
 
3d88604
de4cfb0
3d88604
 
da53b6a
3d88604
 
da53b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d88604
da53b6a
3d88604
 
 
 
 
da53b6a
 
 
 
3d88604
da53b6a
3d88604
 
da53b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d88604
6260d7d
7220f5b
3d88604
 
da53b6a
3d88604
 
 
 
da53b6a
3d88604
 
 
 
 
 
 
 
 
 
 
 
 
 
da53b6a
3d88604
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from faster_whisper import WhisperModel
from transformers import pipeline
from pydub import AudioSegment
import os
import torchaudio
import torch
import re
import time
import sys
from pathlib import Path
import glob
import ctypes
import numpy as np

from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V1, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ, BATCH_SIZE, TASK

def load_cudnn():

    if not torch.cuda.is_available():
        if DEBUG_MODE: print("[INFO] CUDA is not available, skipping cuDNN setup.")
        return

    if DEBUG_MODE: print(f"[INFO] sys.platform: {sys.platform}")
    if sys.platform == "win32":
        torch_lib_dir = Path(torch.__file__).parent / "lib"
        if torch_lib_dir.exists():
            os.add_dll_directory(str(torch_lib_dir))
            if DEBUG_MODE: print(f"[INFO] Added DLL directory: {torch_lib_dir}")
        else:
            if DEBUG_MODE: print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")

    elif sys.platform == "linux":
        site_packages = Path(torch.__file__).resolve().parents[1]
        cudnn_dir = site_packages / "nvidia" / "cudnn" / "lib"

        if not cudnn_dir.exists():
            if DEBUG_MODE: print(f"[ERROR] cudnn dir not found: {cudnn_dir}")
            return

        pattern = str(cudnn_dir / "libcudnn_cnn*.so*")
        matching_files = sorted(glob.glob(pattern))
        if not matching_files:
            if DEBUG_MODE: print(f"[ERROR] No libcudnn_cnn*.so* found in {cudnn_dir}")
            return

        for so_path in matching_files:
            try:
                ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)
                if DEBUG_MODE: print(f"[INFO] Loaded: {so_path}")
            except OSError as e:
                if DEBUG_MODE: print(f"[WARNING] Failed to load {so_path}: {e}")
    else:
        if DEBUG_MODE: print(f"[WARNING] sys.platform is not win32 or linux")
                

def get_settings():

    is_cuda_available = torch.cuda.is_available()
    if is_cuda_available:
        device = "cuda"
        compute_type = "default" 

    else:
        device = "cpu"
        compute_type = "default" 

    if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")

    return device, compute_type



def load_model(use_v2_fast, device, compute_type):

    if DEBUG_MODE: 
        print(f"[MODEL LOADING] use_v2_fast: {use_v2_fast}")

    if use_v2_fast:    
        model = WhisperModel(
            MODEL_PATH_V2_FAST,
            device = device,
            compute_type = compute_type,
        )
    else:
        model = pipeline(
            task="automatic-speech-recognition",
            model=MODEL_PATH_V1,
            chunk_length_s=30,
            device=device,
            token=os.getenv("HF_TOKEN")
            ) 
            
    return model


def split_input_stereo_channels(audio_path):

    ext = os.path.splitext(audio_path)[1].lower()

    if ext == ".wav":
        audio = AudioSegment.from_wav(audio_path)
    elif ext == ".mp3":
        audio = AudioSegment.from_file(audio_path, format="mp3")
    else:
        raise ValueError(f"[FORMAT AUDIO] Unsupported file format for: {audio_path}")

    channels = audio.split_to_mono()

    if len(channels) != 2:
        raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")

    channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav")  # Right
    channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav")  # Left


def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:

    compute_type = compute_type.lower()

    if device.startswith("cuda"):
        if "float16" in compute_type or "int8" in compute_type:
            audio_np_dtype = np.float16
        else:
            audio_np_dtype = np.float32
    else:
        audio_np_dtype = np.float32

    return audio_np_dtype


def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:

    input_audio, sample_rate = torchaudio.load(audio_path)
   
    if input_audio.shape[0] == 2:
        input_audio = torch.mean(input_audio, dim=0, keepdim=True)
    
    resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
    input_audio = resampler(input_audio)
    input_audio = input_audio.squeeze()

    np_dtype = compute_type_to_audio_dtype(compute_type, device)

    input_audio = input_audio.numpy().astype(np_dtype)

    if DEBUG_MODE: 
        print(f"[FORMAT AUDIO] Audio dtype for actual_compute_type: {input_audio.dtype}")
    return input_audio



def process_waveforms(device: str, compute_type: str):

    left_waveform  = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
    right_waveform = format_audio(RIGHT_CHANNEL_TEMP_PATH, compute_type, device)

    return left_waveform, right_waveform


def transcribe_pipeline(audio, model):
    text = model(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": TASK}, return_timestamps=True)["text"]
    return text


def transcribe_channels(left_waveform, right_waveform, model):

    left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
    right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")

    left_result = list(left_result)
    right_result = list(right_result)

    return left_result, right_result


# TODO refactor and rename this function
def post_process_transcription(transcription, max_repeats=2): 
    
    tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)

    cleaned_tokens = []
    repetition_count = 0
    previous_token = None

    for token in tokens:
        reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)

        if reduced_token == previous_token:
            repetition_count += 1
            if repetition_count <= max_repeats:
                cleaned_tokens.append(reduced_token)
        else:
            repetition_count = 1
            cleaned_tokens.append(reduced_token)

        previous_token = reduced_token

    cleaned_transcription = " ".join(cleaned_tokens)
    cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()

    return cleaned_transcription

# TODO not used right now, decide to use it or not
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
    segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
    merged_transcription = ''
    current_speaker = None
    current_segment = []

    for i in range(1, len(segments) - 1, 2):
        speaker_tag = segments[i]
        text = segments[i + 1].strip()

        speaker = re.search(r'\d{2}', speaker_tag).group()

        if speaker == current_speaker:
            current_segment.append(text)
        else:
            if current_speaker is not None:
                merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
            current_speaker = speaker
            current_segment = [text]

    if current_speaker is not None:
        merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'

    return merged_transcription.strip()


def get_segments(result, speaker_label):

    segments = result
    final_segments = [
        (seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
        for seg in segments if seg.text
    ]

    return final_segments
        

def post_process_transcripts(left_result, right_result):

    left_segs = get_segments(left_result, "Speaker 1")
    right_segs = get_segments(right_result, "Speaker 2")

    merged_transcript = sorted(
        left_segs + right_segs,
        key=lambda x: float(x[0]) if x[0] is not None else float("inf")
    )

    clean_output = ""
    for start, end, speaker, text in merged_transcript:
        clean_output += f"[{speaker}]: {text}\n"
    clean_output = clean_output.strip()

    return clean_output


def cleanup_temp_files(*file_paths):
        
    for path in file_paths:
        if path and os.path.exists(path):
            if DEBUG_MODE: print(f"Removing path: {path}")
            os.remove(path)




def generate(audio_path, use_v2_fast):

    load_cudnn()
    device, requested_compute_type = get_settings()
    model = load_model(use_v2_fast, device, requested_compute_type)

    if use_v2_fast:
        actual_compute_type = model.model.compute_type
    else:
        actual_compute_type = "float32" #HF pipeline safe default
    
    if DEBUG_MODE:
        print(f"[SETTINGS] Requested compute_type: {requested_compute_type}")
        print(f"[SETTINGS] Actual compute_type: {actual_compute_type}")
    
    if use_v2_fast:
        split_input_stereo_channels(audio_path)
        left_waveform, right_waveform = process_waveforms(device, actual_compute_type)
        left_result, right_result = transcribe_channels(left_waveform, right_waveform, model)
        output = post_process_transcripts(left_result, right_result)
        cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
    else:
        audio = format_audio(audio_path, actual_compute_type, device)
        merged_results = transcribe_pipeline(audio, model)
        output = post_process_transcription(merged_results)

    return output