Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,208 Bytes
0a376a0 3d88604 da53b6a 6260d7d 7220f5b 3d88604 da53b6a 3d88604 0a376a0 7220f5b 0a376a0 da53b6a 3f0edbb da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 10107b2 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 de4cfb0 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 6260d7d 7220f5b 3d88604 da53b6a 3d88604 da53b6a 3d88604 da53b6a 3d88604 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from faster_whisper import WhisperModel
from transformers import pipeline
from pydub import AudioSegment
import os
import torchaudio
import torch
import re
import time
import sys
from pathlib import Path
import glob
import ctypes
import numpy as np
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V1, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ, BATCH_SIZE, TASK
def load_cudnn():
if not torch.cuda.is_available():
if DEBUG_MODE: print("[INFO] CUDA is not available, skipping cuDNN setup.")
return
if DEBUG_MODE: print(f"[INFO] sys.platform: {sys.platform}")
if sys.platform == "win32":
torch_lib_dir = Path(torch.__file__).parent / "lib"
if torch_lib_dir.exists():
os.add_dll_directory(str(torch_lib_dir))
if DEBUG_MODE: print(f"[INFO] Added DLL directory: {torch_lib_dir}")
else:
if DEBUG_MODE: print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")
elif sys.platform == "linux":
site_packages = Path(torch.__file__).resolve().parents[1]
cudnn_dir = site_packages / "nvidia" / "cudnn" / "lib"
if not cudnn_dir.exists():
if DEBUG_MODE: print(f"[ERROR] cudnn dir not found: {cudnn_dir}")
return
pattern = str(cudnn_dir / "libcudnn_cnn*.so*")
matching_files = sorted(glob.glob(pattern))
if not matching_files:
if DEBUG_MODE: print(f"[ERROR] No libcudnn_cnn*.so* found in {cudnn_dir}")
return
for so_path in matching_files:
try:
ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)
if DEBUG_MODE: print(f"[INFO] Loaded: {so_path}")
except OSError as e:
if DEBUG_MODE: print(f"[WARNING] Failed to load {so_path}: {e}")
else:
if DEBUG_MODE: print(f"[WARNING] sys.platform is not win32 or linux")
def get_settings():
is_cuda_available = torch.cuda.is_available()
if is_cuda_available:
device = "cuda"
compute_type = "default"
else:
device = "cpu"
compute_type = "default"
if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")
return device, compute_type
def load_model(use_v2_fast, device, compute_type):
if DEBUG_MODE:
print(f"[MODEL LOADING] use_v2_fast: {use_v2_fast}")
if use_v2_fast:
model = WhisperModel(
MODEL_PATH_V2_FAST,
device = device,
compute_type = compute_type,
)
else:
model = pipeline(
task="automatic-speech-recognition",
model=MODEL_PATH_V1,
chunk_length_s=30,
device=device,
token=os.getenv("HF_TOKEN")
)
return model
def split_input_stereo_channels(audio_path):
ext = os.path.splitext(audio_path)[1].lower()
if ext == ".wav":
audio = AudioSegment.from_wav(audio_path)
elif ext == ".mp3":
audio = AudioSegment.from_file(audio_path, format="mp3")
else:
raise ValueError(f"[FORMAT AUDIO] Unsupported file format for: {audio_path}")
channels = audio.split_to_mono()
if len(channels) != 2:
raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:
compute_type = compute_type.lower()
if device.startswith("cuda"):
if "float16" in compute_type or "int8" in compute_type:
audio_np_dtype = np.float16
else:
audio_np_dtype = np.float32
else:
audio_np_dtype = np.float32
return audio_np_dtype
def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:
input_audio, sample_rate = torchaudio.load(audio_path)
if input_audio.shape[0] == 2:
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
input_audio = resampler(input_audio)
input_audio = input_audio.squeeze()
np_dtype = compute_type_to_audio_dtype(compute_type, device)
input_audio = input_audio.numpy().astype(np_dtype)
if DEBUG_MODE:
print(f"[FORMAT AUDIO] Audio dtype for actual_compute_type: {input_audio.dtype}")
return input_audio
def process_waveforms(device: str, compute_type: str):
left_waveform = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
right_waveform = format_audio(RIGHT_CHANNEL_TEMP_PATH, compute_type, device)
return left_waveform, right_waveform
def transcribe_pipeline(audio, model):
text = model(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": TASK}, return_timestamps=True)["text"]
return text
def transcribe_channels(left_waveform, right_waveform, model):
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
left_result = list(left_result)
right_result = list(right_result)
return left_result, right_result
# TODO refactor and rename this function
def post_process_transcription(transcription, max_repeats=2):
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
cleaned_tokens = []
repetition_count = 0
previous_token = None
for token in tokens:
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
if reduced_token == previous_token:
repetition_count += 1
if repetition_count <= max_repeats:
cleaned_tokens.append(reduced_token)
else:
repetition_count = 1
cleaned_tokens.append(reduced_token)
previous_token = reduced_token
cleaned_transcription = " ".join(cleaned_tokens)
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
return cleaned_transcription
# TODO not used right now, decide to use it or not
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
merged_transcription = ''
current_speaker = None
current_segment = []
for i in range(1, len(segments) - 1, 2):
speaker_tag = segments[i]
text = segments[i + 1].strip()
speaker = re.search(r'\d{2}', speaker_tag).group()
if speaker == current_speaker:
current_segment.append(text)
else:
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
current_speaker = speaker
current_segment = [text]
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
return merged_transcription.strip()
def get_segments(result, speaker_label):
segments = result
final_segments = [
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
for seg in segments if seg.text
]
return final_segments
def post_process_transcripts(left_result, right_result):
left_segs = get_segments(left_result, "Speaker 1")
right_segs = get_segments(right_result, "Speaker 2")
merged_transcript = sorted(
left_segs + right_segs,
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
)
clean_output = ""
for start, end, speaker, text in merged_transcript:
clean_output += f"[{speaker}]: {text}\n"
clean_output = clean_output.strip()
return clean_output
def cleanup_temp_files(*file_paths):
for path in file_paths:
if path and os.path.exists(path):
if DEBUG_MODE: print(f"Removing path: {path}")
os.remove(path)
def generate(audio_path, use_v2_fast):
load_cudnn()
device, requested_compute_type = get_settings()
model = load_model(use_v2_fast, device, requested_compute_type)
if use_v2_fast:
actual_compute_type = model.model.compute_type
else:
actual_compute_type = "float32" #HF pipeline safe default
if DEBUG_MODE:
print(f"[SETTINGS] Requested compute_type: {requested_compute_type}")
print(f"[SETTINGS] Actual compute_type: {actual_compute_type}")
if use_v2_fast:
split_input_stereo_channels(audio_path)
left_waveform, right_waveform = process_waveforms(device, actual_compute_type)
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model)
output = post_process_transcripts(left_result, right_result)
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
else:
audio = format_audio(audio_path, actual_compute_type, device)
merged_results = transcribe_pipeline(audio, model)
output = post_process_transcription(merged_results)
return output |