asr-inference / whisper_cs_dev.py
Sarah Solito
Release v1.0 including v2_fast improvements and dynamic compute_type selection
2b7ff2f
raw
history blame
11.1 kB
from faster_whisper import WhisperModel
from transformers import pipeline
from pydub import AudioSegment
import os
import torchaudio
import torch
import re
import time
import sys
from pathlib import Path
import glob
import ctypes
import numpy as np
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V1, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ, BATCH_SIZE, TASK
def load_cudnn():
if not torch.cuda.is_available():
if DEBUG_MODE: print("[INFO] CUDA is not available, skipping cuDNN setup.")
return
if DEBUG_MODE: print(f"[INFO] sys.platform: {sys.platform}")
if sys.platform == "win32":
torch_lib_dir = Path(torch.__file__).parent / "lib"
if torch_lib_dir.exists():
os.add_dll_directory(str(torch_lib_dir))
if DEBUG_MODE: print(f"[INFO] Added DLL directory: {torch_lib_dir}")
else:
if DEBUG_MODE: print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")
elif sys.platform == "linux":
site_packages = Path(torch.__file__).resolve().parents[1]
cudnn_dir = site_packages / "nvidia" / "cudnn" / "lib"
if not cudnn_dir.exists():
if DEBUG_MODE: print(f"[ERROR] cudnn dir not found: {cudnn_dir}")
return
pattern = str(cudnn_dir / "libcudnn_cnn*.so*")
matching_files = sorted(glob.glob(pattern))
if not matching_files:
if DEBUG_MODE: print(f"[ERROR] No libcudnn_cnn*.so* found in {cudnn_dir}")
return
for so_path in matching_files:
try:
ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)
if DEBUG_MODE: print(f"[INFO] Loaded: {so_path}")
except OSError as e:
if DEBUG_MODE: print(f"[WARNING] Failed to load {so_path}: {e}")
else:
if DEBUG_MODE: print(f"[WARNING] sys.platform is not win32 or linux")
def get_settings():
if DEBUG_MODE:
print(f"Entering get_settings function...")
is_cuda_available = torch.cuda.is_available()
if is_cuda_available:
device = "cuda"
compute_type = "default"
else:
device = "cpu"
compute_type = "default"
if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")
if DEBUG_MODE: print(f"Exited get_settings function.")
return device, compute_type
def load_model(use_v2_fast, device, compute_type):
if DEBUG_MODE:
print(f"Entering load_model function...")
print(f"[MODEL LOADING] use_v2_fast: {use_v2_fast}")
if use_v2_fast:
model = WhisperModel(
MODEL_PATH_V2_FAST,
device = device,
compute_type = compute_type,
)
else:
model = pipeline(
task="automatic-speech-recognition",
model=MODEL_PATH_V1,
chunk_length_s=30,
device=device,
token=os.getenv("HF_TOKEN")
)
if DEBUG_MODE: print(f"Exiting load_model function...")
return model
def split_input_stereo_channels(audio_path):
if DEBUG_MODE: print(f"Entering split_input_stereo_channels function...")
ext = os.path.splitext(audio_path)[1].lower()
if ext == ".wav":
audio = AudioSegment.from_wav(audio_path)
elif ext == ".mp3":
audio = AudioSegment.from_file(audio_path, format="mp3")
else:
raise ValueError(f"[FORMAT AUDIO] Unsupported file format for: {audio_path}")
channels = audio.split_to_mono()
if len(channels) != 2:
raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
if DEBUG_MODE: print(f"Exited split_input_stereo_channels function.")
def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:
if DEBUG_MODE: print(f"Entering compute_type_to_audio_dtype function.")
compute_type = compute_type.lower()
if device.startswith("cuda"):
if "float16" in compute_type or "int8" in compute_type:
audio_np_dtype = np.float16
else:
audio_np_dtype = np.float32
else:
audio_np_dtype = np.float32
if DEBUG_MODE: print(f"Exited compute_type_to_audio_dtype function.")
return audio_np_dtype
def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:
if DEBUG_MODE: print(f"Entering format_audio function...")
input_audio, sample_rate = torchaudio.load(audio_path)
if input_audio.shape[0] == 2:
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
input_audio = resampler(input_audio)
input_audio = input_audio.squeeze()
np_dtype = compute_type_to_audio_dtype(compute_type, device)
input_audio = input_audio.numpy().astype(np_dtype)
if DEBUG_MODE:
print(f"[FORMAT AUDIO] Audio dtype for actual_compute_type: {input_audio.dtype}")
print(f"Exited format_audio function.")
return input_audio
def process_waveforms(device: str, compute_type: str):
if DEBUG_MODE: print(f"Entering process_waveforms function...")
left_waveform = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
right_waveform = format_audio(RIGHT_CHANNEL_TEMP_PATH, compute_type, device)
if DEBUG_MODE: print(f"Exited process_waveforms function.")
return left_waveform, right_waveform
def transcribe_pipeline(audio, model):
if DEBUG_MODE: print(f"Entering transcribe_pipeline function.")
text = model(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": TASK}, return_timestamps=True)["text"]
if DEBUG_MODE: print(f"Exited transcribe_pipeline function.")
return text
def transcribe_channels(left_waveform, right_waveform, model):
if DEBUG_MODE: print(f"Entering transcribe_channels function...")
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
left_result = list(left_result)
right_result = list(right_result)
if DEBUG_MODE: print(f"Exited transcribe_channels function.")
return left_result, right_result
# TODO refactor and rename this function
def post_process_transcription(transcription, max_repeats=2):
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
cleaned_tokens = []
repetition_count = 0
previous_token = None
for token in tokens:
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
if reduced_token == previous_token:
repetition_count += 1
if repetition_count <= max_repeats:
cleaned_tokens.append(reduced_token)
else:
repetition_count = 1
cleaned_tokens.append(reduced_token)
previous_token = reduced_token
cleaned_transcription = " ".join(cleaned_tokens)
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
return cleaned_transcription
# TODO not used right now, decide to use it or not
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
merged_transcription = ''
current_speaker = None
current_segment = []
for i in range(1, len(segments) - 1, 2):
speaker_tag = segments[i]
text = segments[i + 1].strip()
speaker = re.search(r'\d{2}', speaker_tag).group()
if speaker == current_speaker:
current_segment.append(text)
else:
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
current_speaker = speaker
current_segment = [text]
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
return merged_transcription.strip()
def get_segments(result, speaker_label):
if DEBUG_MODE: print(f"Entering get_segments function...")
segments = result
final_segments = [
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
for seg in segments if seg.text
]
if DEBUG_MODE: print(f"EXited get_segments function.")
return final_segments
def post_process_transcripts(left_result, right_result):
if DEBUG_MODE: print(f"Entering post_process_transcripts function...")
left_segs = get_segments(left_result, "Speaker 1")
right_segs = get_segments(right_result, "Speaker 2")
merged_transcript = sorted(
left_segs + right_segs,
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
)
clean_output = ""
for start, end, speaker, text in merged_transcript:
clean_output += f"[{speaker}]: {text}\n"
clean_output = clean_output.strip()
if DEBUG_MODE: print(f"Exited post_process_transcripts function.")
return clean_output
def cleanup_temp_files(*file_paths):
if DEBUG_MODE: print(f"Entered cleanup_temp_files function...")
for path in file_paths:
if path and os.path.exists(path):
if DEBUG_MODE: print(f"Removing path: {path}")
os.remove(path)
if DEBUG_MODE: print(f"Exited cleanup_temp_files function.")
def generate(audio_path, use_v2_fast):
if DEBUG_MODE: print(f"Entering generate function...")
start = time.time()
load_cudnn()
device, requested_compute_type = get_settings()
model = load_model(use_v2_fast, device, requested_compute_type)
if use_v2_fast:
actual_compute_type = model.model.compute_type
else:
actual_compute_type = "float32" #HF pipeline safe default
if DEBUG_MODE:
print(f"[SETTINGS] Requested compute_type: {requested_compute_type}")
print(f"[SETTINGS] Actual compute_type: {actual_compute_type}")
if use_v2_fast:
split_input_stereo_channels(audio_path)
left_waveform, right_waveform = process_waveforms(device, actual_compute_type)
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model)
output = post_process_transcripts(left_result, right_result)
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
else:
audio = format_audio(audio_path, actual_compute_type, device)
merged_results = transcribe_pipeline(audio, model)
output = post_process_transcription(merged_results)
end = time.time()
audio_duration = torchaudio.info(audio_path).num_frames / torchaudio.info(audio_path).sample_rate
rtf = (end - start) / audio_duration
if DEBUG_MODE: print(f"[LATENCY]: {end - start}")
if DEBUG_MODE: print(f"[RTF]: {rtf:.2f}")
if DEBUG_MODE: print(f"Exited generate function.")
return output