asr-inference / whisper_cs_dev.py
AbirMessaoudi's picture
release_v1.0_v2_fast (#45)
3d88604 verified
raw
history blame
9.21 kB
from faster_whisper import WhisperModel
from transformers import pipeline
from pydub import AudioSegment
import os
import torchaudio
import torch
import re
import time
import sys
from pathlib import Path
import glob
import ctypes
import numpy as np
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V1, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ, BATCH_SIZE, TASK
def load_cudnn():
if not torch.cuda.is_available():
if DEBUG_MODE: print("[INFO] CUDA is not available, skipping cuDNN setup.")
return
if DEBUG_MODE: print(f"[INFO] sys.platform: {sys.platform}")
if sys.platform == "win32":
torch_lib_dir = Path(torch.__file__).parent / "lib"
if torch_lib_dir.exists():
os.add_dll_directory(str(torch_lib_dir))
if DEBUG_MODE: print(f"[INFO] Added DLL directory: {torch_lib_dir}")
else:
if DEBUG_MODE: print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")
elif sys.platform == "linux":
site_packages = Path(torch.__file__).resolve().parents[1]
cudnn_dir = site_packages / "nvidia" / "cudnn" / "lib"
if not cudnn_dir.exists():
if DEBUG_MODE: print(f"[ERROR] cudnn dir not found: {cudnn_dir}")
return
pattern = str(cudnn_dir / "libcudnn_cnn*.so*")
matching_files = sorted(glob.glob(pattern))
if not matching_files:
if DEBUG_MODE: print(f"[ERROR] No libcudnn_cnn*.so* found in {cudnn_dir}")
return
for so_path in matching_files:
try:
ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)
if DEBUG_MODE: print(f"[INFO] Loaded: {so_path}")
except OSError as e:
if DEBUG_MODE: print(f"[WARNING] Failed to load {so_path}: {e}")
else:
if DEBUG_MODE: print(f"[WARNING] sys.platform is not win32 or linux")
def get_settings():
is_cuda_available = torch.cuda.is_available()
if is_cuda_available:
device = "cuda"
compute_type = "default"
else:
device = "cpu"
compute_type = "default"
if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")
return device, compute_type
def load_model(use_v2_fast, device, compute_type):
if DEBUG_MODE:
print(f"[MODEL LOADING] use_v2_fast: {use_v2_fast}")
if use_v2_fast:
model = WhisperModel(
MODEL_PATH_V2_FAST,
device = device,
compute_type = compute_type,
)
else:
model = pipeline(
task="automatic-speech-recognition",
model=MODEL_PATH_V1,
chunk_length_s=30,
device=device,
token=os.getenv("HF_TOKEN")
)
return model
def split_input_stereo_channels(audio_path):
ext = os.path.splitext(audio_path)[1].lower()
if ext == ".wav":
audio = AudioSegment.from_wav(audio_path)
elif ext == ".mp3":
audio = AudioSegment.from_file(audio_path, format="mp3")
else:
raise ValueError(f"[FORMAT AUDIO] Unsupported file format for: {audio_path}")
channels = audio.split_to_mono()
if len(channels) != 2:
raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:
compute_type = compute_type.lower()
if device.startswith("cuda"):
if "float16" in compute_type or "int8" in compute_type:
audio_np_dtype = np.float16
else:
audio_np_dtype = np.float32
else:
audio_np_dtype = np.float32
return audio_np_dtype
def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:
input_audio, sample_rate = torchaudio.load(audio_path)
if input_audio.shape[0] == 2:
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
input_audio = resampler(input_audio)
input_audio = input_audio.squeeze()
np_dtype = compute_type_to_audio_dtype(compute_type, device)
input_audio = input_audio.numpy().astype(np_dtype)
if DEBUG_MODE:
print(f"[FORMAT AUDIO] Audio dtype for actual_compute_type: {input_audio.dtype}")
return input_audio
def process_waveforms(device: str, compute_type: str):
left_waveform = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
right_waveform = format_audio(RIGHT_CHANNEL_TEMP_PATH, compute_type, device)
return left_waveform, right_waveform
def transcribe_pipeline(audio, model):
text = model(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": TASK}, return_timestamps=True)["text"]
return text
def transcribe_channels(left_waveform, right_waveform, model):
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
left_result = list(left_result)
right_result = list(right_result)
return left_result, right_result
# TODO refactor and rename this function
def post_process_transcription(transcription, max_repeats=2):
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
cleaned_tokens = []
repetition_count = 0
previous_token = None
for token in tokens:
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
if reduced_token == previous_token:
repetition_count += 1
if repetition_count <= max_repeats:
cleaned_tokens.append(reduced_token)
else:
repetition_count = 1
cleaned_tokens.append(reduced_token)
previous_token = reduced_token
cleaned_transcription = " ".join(cleaned_tokens)
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
return cleaned_transcription
# TODO not used right now, decide to use it or not
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
merged_transcription = ''
current_speaker = None
current_segment = []
for i in range(1, len(segments) - 1, 2):
speaker_tag = segments[i]
text = segments[i + 1].strip()
speaker = re.search(r'\d{2}', speaker_tag).group()
if speaker == current_speaker:
current_segment.append(text)
else:
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
current_speaker = speaker
current_segment = [text]
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
return merged_transcription.strip()
def get_segments(result, speaker_label):
segments = result
final_segments = [
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
for seg in segments if seg.text
]
return final_segments
def post_process_transcripts(left_result, right_result):
left_segs = get_segments(left_result, "Speaker 1")
right_segs = get_segments(right_result, "Speaker 2")
merged_transcript = sorted(
left_segs + right_segs,
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
)
clean_output = ""
for start, end, speaker, text in merged_transcript:
clean_output += f"[{speaker}]: {text}\n"
clean_output = clean_output.strip()
return clean_output
def cleanup_temp_files(*file_paths):
for path in file_paths:
if path and os.path.exists(path):
if DEBUG_MODE: print(f"Removing path: {path}")
os.remove(path)
def generate(audio_path, use_v2_fast):
load_cudnn()
device, requested_compute_type = get_settings()
model = load_model(use_v2_fast, device, requested_compute_type)
if use_v2_fast:
actual_compute_type = model.model.compute_type
else:
actual_compute_type = "float32" #HF pipeline safe default
if DEBUG_MODE:
print(f"[SETTINGS] Requested compute_type: {requested_compute_type}")
print(f"[SETTINGS] Actual compute_type: {actual_compute_type}")
if use_v2_fast:
split_input_stereo_channels(audio_path)
left_waveform, right_waveform = process_waveforms(device, actual_compute_type)
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model)
output = post_process_transcripts(left_result, right_result)
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
else:
audio = format_audio(audio_path, actual_compute_type, device)
merged_results = transcribe_pipeline(audio, model)
output = post_process_transcription(merged_results)
return output