Spaces:
Running
on
Zero
Running
on
Zero
fase_1, fase_2 releases (#46)
Browse files- Fase_1 and Fase_2 releases, code cleaned (d6fb6a283d102ccaf8f654e51575987d4045b6d6)
- README.md +2 -2
- age_gender_detector.py +299 -0
- app.py +94 -25
- whisper_cs_dev.py → audio_utils.py +50 -158
- meteo_detector.py +12 -0
- requirements.txt +2 -2
- requirements_dev.txt +0 -171
- settings.py +5 -0
- shout_detector.py +148 -0
- silence_detector.py +44 -0
- whisper_cs.py +0 -382
- whisper_cs_fase_1.py +75 -0
- whisper_cs_fase_2.py +89 -0
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🤫
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
tags:
|
|
@@ -89,7 +89,7 @@ Per descarregar i córrer la imatge de docker:
|
|
| 89 |
|
| 90 |
```
|
| 91 |
docker run -d -p 7860:7860 --name asr-inference --platform=linux/amd64 \
|
| 92 |
-
registry.hf.space/
|
| 93 |
```
|
| 94 |
|
| 95 |
|
|
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.20.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
tags:
|
|
|
|
| 89 |
|
| 90 |
```
|
| 91 |
docker run -d -p 7860:7860 --name asr-inference --platform=linux/amd64 \
|
| 92 |
+
registry.hf.space/projecte-aina-asr-inference:latest python app.py
|
| 93 |
```
|
| 94 |
|
| 95 |
|
age_gender_detector.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.autograd import Function
|
| 6 |
+
from torch import tensor
|
| 7 |
+
from transformers import Wav2Vec2FeatureExtractor, WavLMModel
|
| 8 |
+
import transformers.models.wavlm.modeling_wavlm as wavlm
|
| 9 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 10 |
+
from speechbrain.lobes.models.huggingface_transformers.huggingface import make_padding_masks
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class RevGrad(Function):
|
| 14 |
+
@staticmethod
|
| 15 |
+
def forward(ctx, input_, alpha_):
|
| 16 |
+
ctx.save_for_backward(input_, alpha_)
|
| 17 |
+
return input_
|
| 18 |
+
|
| 19 |
+
@staticmethod
|
| 20 |
+
def backward(ctx, grad_output):
|
| 21 |
+
_, alpha_ = ctx.saved_tensors
|
| 22 |
+
grad_input = -grad_output * alpha_ if ctx.needs_input_grad[0] else None
|
| 23 |
+
return grad_input, None
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
revgrad = RevGrad.apply
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class RevGradLayer(nn.Module):
|
| 30 |
+
def __init__(self, alpha=1.):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self._alpha = tensor(alpha, requires_grad=False)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
return revgrad(x, self._alpha)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class WavLMEncoderLayer(nn.Module):
|
| 39 |
+
def __init__(self, layer_idx, config, has_relative_position_bias: bool = True):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.attention = wavlm.WavLMAttention(
|
| 42 |
+
embed_dim=config.hidden_size,
|
| 43 |
+
num_heads=config.num_attention_heads,
|
| 44 |
+
dropout=config.attention_dropout,
|
| 45 |
+
num_buckets=config.num_buckets,
|
| 46 |
+
max_distance=config.max_bucket_distance,
|
| 47 |
+
has_relative_position_bias=has_relative_position_bias,
|
| 48 |
+
)
|
| 49 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 50 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 51 |
+
self.feed_forward = wavlm.WavLMFeedForward(config)
|
| 52 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 53 |
+
self.config = config
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, index=0):
|
| 57 |
+
attn_residual = hidden_states
|
| 58 |
+
hidden_states, attn_weights, position_bias = self.attention(
|
| 59 |
+
hidden_states,
|
| 60 |
+
attention_mask=attention_mask,
|
| 61 |
+
position_bias=position_bias,
|
| 62 |
+
output_attentions=output_attentions,
|
| 63 |
+
index=index,
|
| 64 |
+
)
|
| 65 |
+
hidden_states = self.dropout(hidden_states)
|
| 66 |
+
hidden_states = attn_residual + hidden_states
|
| 67 |
+
|
| 68 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 69 |
+
hidden_states = hidden_states + self.feed_forward(hidden_states)
|
| 70 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 71 |
+
outputs = (hidden_states, position_bias)
|
| 72 |
+
|
| 73 |
+
if output_attentions:
|
| 74 |
+
outputs += (attn_weights,)
|
| 75 |
+
|
| 76 |
+
return outputs
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class WavLMEncoderLayerStableLayerNorm(nn.Module):
|
| 80 |
+
def __init__(self, layer_idx, config, has_relative_position_bias: bool = True):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.attention = wavlm.WavLMAttention(
|
| 83 |
+
embed_dim=config.hidden_size,
|
| 84 |
+
num_heads=config.num_attention_heads,
|
| 85 |
+
dropout=config.attention_dropout,
|
| 86 |
+
num_buckets=config.num_buckets,
|
| 87 |
+
max_distance=config.max_bucket_distance,
|
| 88 |
+
has_relative_position_bias=has_relative_position_bias,
|
| 89 |
+
)
|
| 90 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 91 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 92 |
+
self.feed_forward = wavlm.WavLMFeedForward(config)
|
| 93 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 94 |
+
self.config = config
|
| 95 |
+
|
| 96 |
+
def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False):
|
| 97 |
+
attn_residual = hidden_states
|
| 98 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 99 |
+
hidden_states, attn_weights, position_bias = self.attention(
|
| 100 |
+
hidden_states,
|
| 101 |
+
attention_mask=attention_mask,
|
| 102 |
+
position_bias=position_bias,
|
| 103 |
+
output_attentions=output_attentions,
|
| 104 |
+
)
|
| 105 |
+
hidden_states = self.dropout(hidden_states)
|
| 106 |
+
hidden_states = attn_residual + hidden_states
|
| 107 |
+
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
| 108 |
+
|
| 109 |
+
outputs = (hidden_states, position_bias)
|
| 110 |
+
|
| 111 |
+
if output_attentions:
|
| 112 |
+
outputs += (attn_weights,)
|
| 113 |
+
|
| 114 |
+
return outputs
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class WavLMWrapper(nn.Module, PyTorchModelHubMixin):
|
| 118 |
+
|
| 119 |
+
def __init__(
|
| 120 |
+
self,
|
| 121 |
+
pretrain_model="wavlm_large",
|
| 122 |
+
hidden_dim=256,
|
| 123 |
+
freeze_params=True,
|
| 124 |
+
output_class_num=4,
|
| 125 |
+
use_conv_output=True,
|
| 126 |
+
apply_reg=False
|
| 127 |
+
):
|
| 128 |
+
super().__init__()
|
| 129 |
+
self.pretrain_model = pretrain_model
|
| 130 |
+
self.use_conv_output = use_conv_output
|
| 131 |
+
|
| 132 |
+
# Load backbone
|
| 133 |
+
if self.pretrain_model == "wavlm":
|
| 134 |
+
self.backbone_model = WavLMModel.from_pretrained(
|
| 135 |
+
"microsoft/wavlm-base-plus",
|
| 136 |
+
output_hidden_states=True,
|
| 137 |
+
)
|
| 138 |
+
elif self.pretrain_model == "wavlm_large":
|
| 139 |
+
self.processor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-large')
|
| 140 |
+
self.backbone_model = WavLMModel.from_pretrained(
|
| 141 |
+
"microsoft/wavlm-large",
|
| 142 |
+
output_hidden_states=True,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Keep original encoder layers (no LoRA)
|
| 146 |
+
state_dict = self.backbone_model.state_dict()
|
| 147 |
+
self.model_config = self.backbone_model.config
|
| 148 |
+
if self.pretrain_model == "wavlm":
|
| 149 |
+
self.backbone_model.encoder.layers = nn.ModuleList(
|
| 150 |
+
[WavLMEncoderLayer(i, self.model_config, has_relative_position_bias=(i == 0))
|
| 151 |
+
for i in range(self.model_config.num_hidden_layers)]
|
| 152 |
+
)
|
| 153 |
+
else:
|
| 154 |
+
self.backbone_model.encoder.layers = nn.ModuleList(
|
| 155 |
+
[WavLMEncoderLayerStableLayerNorm(i, self.model_config, has_relative_position_bias=(i == 0))
|
| 156 |
+
for i in range(self.model_config.num_hidden_layers)]
|
| 157 |
+
)
|
| 158 |
+
self.backbone_model.load_state_dict(state_dict, strict=False)
|
| 159 |
+
|
| 160 |
+
# Freeze weights if requested
|
| 161 |
+
if freeze_params:
|
| 162 |
+
for p in self.backbone_model.parameters():
|
| 163 |
+
p.requires_grad = False
|
| 164 |
+
|
| 165 |
+
# Conv projection layers
|
| 166 |
+
self.model_seq = nn.Sequential(
|
| 167 |
+
nn.Conv1d(self.model_config.hidden_size, hidden_dim, 1),
|
| 168 |
+
nn.ReLU(),
|
| 169 |
+
nn.Dropout(0.1),
|
| 170 |
+
nn.Conv1d(hidden_dim, hidden_dim, 1),
|
| 171 |
+
nn.ReLU(),
|
| 172 |
+
nn.Dropout(0.1),
|
| 173 |
+
nn.Conv1d(hidden_dim, hidden_dim, 1)
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Layer weights
|
| 177 |
+
num_layers = self.model_config.num_hidden_layers + 1 if use_conv_output else self.model_config.num_hidden_layers
|
| 178 |
+
self.weights = nn.Parameter(torch.ones(num_layers)/num_layers)
|
| 179 |
+
|
| 180 |
+
# Output heads
|
| 181 |
+
if apply_reg:
|
| 182 |
+
self.age_dist_layer = nn.Sequential(
|
| 183 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 184 |
+
nn.ReLU(),
|
| 185 |
+
nn.Linear(hidden_dim, 1),
|
| 186 |
+
nn.Sigmoid()
|
| 187 |
+
)
|
| 188 |
+
else:
|
| 189 |
+
self.age_dist_layer = nn.Sequential(
|
| 190 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 191 |
+
nn.ReLU(),
|
| 192 |
+
nn.Linear(hidden_dim, 7)
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
self.sex_layer = nn.Sequential(
|
| 196 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 197 |
+
nn.ReLU(),
|
| 198 |
+
nn.Linear(hidden_dim, 2)
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
def forward(self, x, length=None, return_feature=False, pred="age_dist_sex"):
|
| 202 |
+
# Feature extraction
|
| 203 |
+
if self.pretrain_model == "wavlm_large":
|
| 204 |
+
with torch.no_grad():
|
| 205 |
+
signal, attention_mask = [], []
|
| 206 |
+
if length is not None:
|
| 207 |
+
attention_mask = make_padding_masks(x, wav_len=length/length.max()).to(x.device)
|
| 208 |
+
else:
|
| 209 |
+
attention_mask = make_padding_masks(x, wav_len=torch.tensor([1]).to(x.device)).to(x.device)
|
| 210 |
+
|
| 211 |
+
for idx in range(len(x)):
|
| 212 |
+
input_vals = self.processor(x[idx], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 213 |
+
signal.append(input_vals["input_values"][0].to(x.device))
|
| 214 |
+
signal = torch.stack(signal)
|
| 215 |
+
|
| 216 |
+
if length is not None:
|
| 217 |
+
length = self.get_feat_extract_output_lengths(length.detach().cpu()).cuda()
|
| 218 |
+
|
| 219 |
+
if self.pretrain_model == "wavlm":
|
| 220 |
+
x = self.backbone_model(x, output_hidden_states=True).hidden_states
|
| 221 |
+
else:
|
| 222 |
+
x = self.backbone_model(signal, attention_mask=attention_mask, output_hidden_states=True).hidden_states
|
| 223 |
+
|
| 224 |
+
# Weighted sum of layers
|
| 225 |
+
stacked_feature = torch.stack(x, dim=0) if self.use_conv_output else torch.stack(x, dim=0)[1:]
|
| 226 |
+
_, *origin_shape = stacked_feature.shape
|
| 227 |
+
stacked_feature = stacked_feature.view(stacked_feature.shape[0], -1)
|
| 228 |
+
norm_weights = F.softmax(self.weights, dim=-1)
|
| 229 |
+
weighted_feature = (norm_weights.unsqueeze(-1) * stacked_feature).sum(dim=0)
|
| 230 |
+
features = weighted_feature.view(*origin_shape)
|
| 231 |
+
|
| 232 |
+
# Conv projection
|
| 233 |
+
features = self.model_seq(features.transpose(1, 2)).transpose(1, 2)
|
| 234 |
+
|
| 235 |
+
# Pooling
|
| 236 |
+
if length is not None:
|
| 237 |
+
mean = []
|
| 238 |
+
for snt_id in range(features.shape[0]):
|
| 239 |
+
actual_size = length[snt_id]
|
| 240 |
+
mean.append(torch.mean(features[snt_id, 0:actual_size, ...], dim=0))
|
| 241 |
+
features = torch.stack(mean)
|
| 242 |
+
else:
|
| 243 |
+
features = torch.mean(features, dim=1)
|
| 244 |
+
|
| 245 |
+
# Predictions
|
| 246 |
+
age_pred = self.age_dist_layer(features)
|
| 247 |
+
sex_pred = self.sex_layer(features)
|
| 248 |
+
|
| 249 |
+
if return_feature:
|
| 250 |
+
return age_pred, sex_pred, features
|
| 251 |
+
return age_pred, sex_pred
|
| 252 |
+
|
| 253 |
+
# Huggingface conv output length helper
|
| 254 |
+
def get_feat_extract_output_lengths(self, input_length):
|
| 255 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
| 256 |
+
return (input_length - kernel_size) // stride + 1
|
| 257 |
+
for kernel_size, stride in zip(self.backbone_model.config.conv_kernel, self.backbone_model.config.conv_stride):
|
| 258 |
+
input_length = _conv_out_length(input_length, kernel_size, stride)
|
| 259 |
+
return input_length
|
| 260 |
+
|
| 261 |
+
def age_gender(audio_waveform_np, model, device):
|
| 262 |
+
#numpy2tensor
|
| 263 |
+
if isinstance(audio_waveform_np, np.ndarray):
|
| 264 |
+
tensor = torch.from_numpy(audio_waveform_np)
|
| 265 |
+
elif isinstance(audio_waveform_np, torch.Tensor):
|
| 266 |
+
tensor = audio_waveform_np
|
| 267 |
+
|
| 268 |
+
if tensor.dim() == 1:
|
| 269 |
+
tensor = tensor.unsqueeze(0)
|
| 270 |
+
|
| 271 |
+
tensor = tensor.to(torch.device(device))
|
| 272 |
+
|
| 273 |
+
if tensor.dtype not in (torch.float32, torch.float16):
|
| 274 |
+
tensor = tensor.float()
|
| 275 |
+
|
| 276 |
+
with torch.no_grad():
|
| 277 |
+
wavlm_outputs, wavlm_sex_outputs = model(tensor)
|
| 278 |
+
|
| 279 |
+
age_pred = wavlm_outputs.detach().cpu().numpy().flatten() * 100.0
|
| 280 |
+
sex_prob = F.softmax(wavlm_sex_outputs, dim=1)
|
| 281 |
+
sex_labels_es = ["Femenino", "Masculino"]
|
| 282 |
+
sex_idx = int(torch.argmax(sex_prob).detach().cpu().item())
|
| 283 |
+
sex_pred = sex_labels_es[sex_idx]
|
| 284 |
+
|
| 285 |
+
try:
|
| 286 |
+
age_value = int(round(float(age_pred[0])))
|
| 287 |
+
if age_value < 20:
|
| 288 |
+
age_group = "joven (menor de 20)"
|
| 289 |
+
elif age_value < 35:
|
| 290 |
+
age_group = "adulto (20–35)"
|
| 291 |
+
elif age_value < 60:
|
| 292 |
+
age_group = "mediana edad (35–60)"
|
| 293 |
+
else:
|
| 294 |
+
age_group = "mayor (60+)"
|
| 295 |
+
except Exception:
|
| 296 |
+
age_value = None
|
| 297 |
+
age_group = "desconocido"
|
| 298 |
+
|
| 299 |
+
return str(age_value) if age_value is not None else "N/A", sex_pred, age_group
|
app.py
CHANGED
|
@@ -1,40 +1,109 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from whisper_cs_dev import generate
|
| 3 |
-
from AinaTheme import theme
|
| 4 |
import spaces
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
if inputs is None:
|
| 9 |
-
raise gr.Error("Cap fitxer d'àudio introduit! Si us plau pengeu un fitxer "
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
use_v2_fast = model_version == "v2_fast"
|
| 13 |
-
return generate(audio_path=inputs, use_v2_fast=use_v2_fast)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
with gr.
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
submit_btn.click(fn=transcribe, inputs=[input, model_version], outputs=[output])
|
| 37 |
-
clear_btn.click(fn=clear, inputs=[], outputs=[input, model_version], queue=False)
|
| 38 |
|
| 39 |
if __name__ == "__main__":
|
| 40 |
demo.launch()
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
import spaces
|
| 4 |
|
| 5 |
+
from whisper_cs_fase_1 import generate_fase_1
|
| 6 |
+
from whisper_cs_fase_2 import generate_fase_2
|
| 7 |
+
from AinaTheme import theme
|
| 8 |
+
|
| 9 |
+
@spaces.GPU()
|
| 10 |
+
def transcribe_fase_1(inputs: str, model_version: str, civil_channel: str):
|
| 11 |
+
if inputs is None:
|
| 12 |
+
raise gr.Error("Cap fitxer d'àudio introduit! Si us plau pengeu un fitxer o enregistreu un àudio abans d'enviar la vostra sol·licitud")
|
| 13 |
+
return generate_fase_1(audio_path=inputs, model_version=model_version, civil_channel=civil_channel)
|
| 14 |
+
|
| 15 |
+
@spaces.GPU()
|
| 16 |
+
def transcribe_fase_2_display(inputs: str, model_version: str, civil_channel: str):
|
| 17 |
if inputs is None:
|
| 18 |
+
raise gr.Error("Cap fitxer d'àudio introduit! Si us plau pengeu un fitxer o enregistreu un àudio abans d'enviar la vostra sol·licitud")
|
| 19 |
+
return generate_fase_2(audio_path=inputs, model_version=model_version, civil_channel=civil_channel)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def clear_fase_1(model_version, civil_channel):
|
| 23 |
+
return None, model_version, civil_channel
|
| 24 |
+
|
| 25 |
+
def clear_fase_2(model_version, civil_channel):
|
| 26 |
+
return None, model_version, civil_channel, "", "", "", "", "", ""
|
| 27 |
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
with gr.Blocks(theme=theme) as demo:
|
| 30 |
+
gr.Markdown("## 🗣️ Transcripció automàtica d'àudio — Mode amb dues fases")
|
| 31 |
|
| 32 |
+
with gr.Tabs():
|
| 33 |
+
with gr.Tab("Fase 1"):
|
| 34 |
+
description_string = (
|
| 35 |
+
"### 🎧 Transcripció de trucades multilingüe de bona qualitat per a transcripció fiable\n"
|
| 36 |
+
"- **v2_fast**: Inclou separació de canals i inferència ràpida.\n"
|
| 37 |
+
"- **v1.0**: Inclou inferència moderada sense separació de canals."
|
| 38 |
+
)
|
| 39 |
+
gr.Markdown(description_string)
|
| 40 |
|
| 41 |
+
with gr.Row():
|
| 42 |
+
with gr.Column(scale=1):
|
| 43 |
+
model_version_1 = gr.Dropdown(
|
| 44 |
+
label="Model Version",
|
| 45 |
+
choices=["v2_fast", "v1.0"],
|
| 46 |
+
value="v2_fast",
|
| 47 |
+
elem_id="fase1-model-version",
|
| 48 |
+
)
|
| 49 |
+
civil_channel_1 = gr.Dropdown(
|
| 50 |
+
label="Canal del Civil (persona que truca)",
|
| 51 |
+
choices=["Left", "Right"],
|
| 52 |
+
value="Left",
|
| 53 |
+
)
|
| 54 |
+
input_1 = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
|
| 55 |
+
with gr.Column(scale=1):
|
| 56 |
+
output_1 = gr.Textbox(label="Output", lines=8)
|
| 57 |
|
| 58 |
+
with gr.Row(variant="panel"):
|
| 59 |
+
clear_btn = gr.Button("Clear")
|
| 60 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
| 61 |
|
| 62 |
+
submit_btn.click(fn=transcribe_fase_1, inputs=[input_1, model_version_1, civil_channel_1], outputs=[output_1])
|
| 63 |
+
clear_btn.click(fn=clear_fase_1, inputs=[model_version_1, civil_channel_1], outputs=[input_1, model_version_1, civil_channel_1], queue=False)
|
| 64 |
|
| 65 |
+
with gr.Tab("Fase 2"):
|
| 66 |
+
description_string = (
|
| 67 |
+
"### 🧠 Transcripció de trucades multilingüe de bona qualitat per a anàlisi d'informe\n"
|
| 68 |
+
"- **v2_fast_and_detection_v1**: Inclou inferència ràpida, separació de parlants i explotació de nova informació per processos analítics i informes avançats."
|
| 69 |
+
)
|
| 70 |
+
gr.Markdown(description_string)
|
| 71 |
+
|
| 72 |
+
with gr.Row():
|
| 73 |
+
with gr.Column(scale=1):
|
| 74 |
+
model_version_2 = gr.Dropdown(
|
| 75 |
+
label="Model Version",
|
| 76 |
+
choices=["v2_fast_and_detection_v1"],
|
| 77 |
+
value="v2_fast_and_detection_v1",
|
| 78 |
+
elem_id="fase2-model-version",
|
| 79 |
+
)
|
| 80 |
+
civil_channel_2 = gr.Dropdown(
|
| 81 |
+
label="Canal del Civil (persona que truca)",
|
| 82 |
+
choices=["Left", "Right"],
|
| 83 |
+
value="Left",
|
| 84 |
+
)
|
| 85 |
+
input_2 = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
|
| 86 |
+
with gr.Column(scale=1):
|
| 87 |
+
output_text = gr.Textbox(label="Transcripció ASR", lines=8)
|
| 88 |
+
output_sex = gr.Textbox(label="Gènere", lines=1)
|
| 89 |
+
output_age = gr.Textbox(label="Edat", lines=1)
|
| 90 |
+
output_silence = gr.Textbox(label="Detecció de silenci", lines=2)
|
| 91 |
+
output_shout = gr.Textbox(label="Detecció de crits", lines=2)
|
| 92 |
+
output_meteo = gr.Textbox(label="Detecció d'esdeveniment meteorològic", lines=2)
|
| 93 |
+
|
| 94 |
+
with gr.Row(variant="panel"):
|
| 95 |
+
clear_btn2 = gr.Button("Clear")
|
| 96 |
+
submit_btn2 = gr.Button("Submit", variant="primary")
|
| 97 |
+
|
| 98 |
+
submit_btn2.click(
|
| 99 |
+
fn=transcribe_fase_2_display,
|
| 100 |
+
inputs=[input_2, model_version_2, civil_channel_2],
|
| 101 |
+
outputs=[output_text, output_sex, output_age, output_silence, output_shout, output_meteo]
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
clear_btn2.click(fn=clear_fase_2, inputs=[model_version_2, civil_channel_2], outputs=[input_2, model_version_2, civil_channel_2, output_text, output_sex, output_age, output_silence, output_shout, output_meteo], queue=False)
|
| 105 |
|
|
|
|
|
|
|
| 106 |
|
| 107 |
if __name__ == "__main__":
|
| 108 |
demo.launch()
|
| 109 |
+
|
whisper_cs_dev.py → audio_utils.py
RENAMED
|
@@ -1,98 +1,28 @@
|
|
| 1 |
-
from faster_whisper import WhisperModel
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
from pydub import AudioSegment
|
| 4 |
import os
|
| 5 |
-
import torchaudio
|
| 6 |
import torch
|
| 7 |
-
import
|
| 8 |
-
import time
|
| 9 |
-
import sys
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
import glob
|
| 12 |
-
import ctypes
|
| 13 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
if not torch.cuda.is_available():
|
| 20 |
-
if DEBUG_MODE: print("[INFO] CUDA is not available, skipping cuDNN setup.")
|
| 21 |
-
return
|
| 22 |
-
|
| 23 |
-
if DEBUG_MODE: print(f"[INFO] sys.platform: {sys.platform}")
|
| 24 |
-
if sys.platform == "win32":
|
| 25 |
-
torch_lib_dir = Path(torch.__file__).parent / "lib"
|
| 26 |
-
if torch_lib_dir.exists():
|
| 27 |
-
os.add_dll_directory(str(torch_lib_dir))
|
| 28 |
-
if DEBUG_MODE: print(f"[INFO] Added DLL directory: {torch_lib_dir}")
|
| 29 |
-
else:
|
| 30 |
-
if DEBUG_MODE: print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")
|
| 31 |
-
|
| 32 |
-
elif sys.platform == "linux":
|
| 33 |
-
site_packages = Path(torch.__file__).resolve().parents[1]
|
| 34 |
-
cudnn_dir = site_packages / "nvidia" / "cudnn" / "lib"
|
| 35 |
-
|
| 36 |
-
if not cudnn_dir.exists():
|
| 37 |
-
if DEBUG_MODE: print(f"[ERROR] cudnn dir not found: {cudnn_dir}")
|
| 38 |
-
return
|
| 39 |
-
|
| 40 |
-
pattern = str(cudnn_dir / "libcudnn_cnn*.so*")
|
| 41 |
-
matching_files = sorted(glob.glob(pattern))
|
| 42 |
-
if not matching_files:
|
| 43 |
-
if DEBUG_MODE: print(f"[ERROR] No libcudnn_cnn*.so* found in {cudnn_dir}")
|
| 44 |
-
return
|
| 45 |
-
|
| 46 |
-
for so_path in matching_files:
|
| 47 |
-
try:
|
| 48 |
-
ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)
|
| 49 |
-
if DEBUG_MODE: print(f"[INFO] Loaded: {so_path}")
|
| 50 |
-
except OSError as e:
|
| 51 |
-
if DEBUG_MODE: print(f"[WARNING] Failed to load {so_path}: {e}")
|
| 52 |
-
else:
|
| 53 |
-
if DEBUG_MODE: print(f"[WARNING] sys.platform is not win32 or linux")
|
| 54 |
-
|
| 55 |
|
|
|
|
| 56 |
def get_settings():
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
device = "cuda"
|
| 61 |
-
compute_type = "default"
|
| 62 |
-
|
| 63 |
-
else:
|
| 64 |
-
device = "cpu"
|
| 65 |
-
compute_type = "default"
|
| 66 |
|
| 67 |
if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")
|
| 68 |
|
| 69 |
return device, compute_type
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def load_model(use_v2_fast, device, compute_type):
|
| 74 |
-
|
| 75 |
-
if DEBUG_MODE:
|
| 76 |
-
print(f"[MODEL LOADING] use_v2_fast: {use_v2_fast}")
|
| 77 |
-
|
| 78 |
-
if use_v2_fast:
|
| 79 |
-
model = WhisperModel(
|
| 80 |
-
MODEL_PATH_V2_FAST,
|
| 81 |
-
device = device,
|
| 82 |
-
compute_type = compute_type,
|
| 83 |
-
)
|
| 84 |
-
else:
|
| 85 |
-
model = pipeline(
|
| 86 |
-
task="automatic-speech-recognition",
|
| 87 |
-
model=MODEL_PATH_V1,
|
| 88 |
-
chunk_length_s=30,
|
| 89 |
-
device=device,
|
| 90 |
-
token=os.getenv("HF_TOKEN")
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
return model
|
| 94 |
-
|
| 95 |
-
|
| 96 |
def split_input_stereo_channels(audio_path):
|
| 97 |
|
| 98 |
ext = os.path.splitext(audio_path)[1].lower()
|
|
@@ -109,8 +39,8 @@ def split_input_stereo_channels(audio_path):
|
|
| 109 |
if len(channels) != 2:
|
| 110 |
raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")
|
| 111 |
|
| 112 |
-
channels[0].export(
|
| 113 |
-
channels[1].export(
|
| 114 |
|
| 115 |
|
| 116 |
def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:
|
|
@@ -127,11 +57,10 @@ def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:
|
|
| 127 |
|
| 128 |
return audio_np_dtype
|
| 129 |
|
| 130 |
-
|
| 131 |
def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:
|
| 132 |
|
| 133 |
input_audio, sample_rate = torchaudio.load(audio_path)
|
| 134 |
-
|
| 135 |
if input_audio.shape[0] == 2:
|
| 136 |
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
|
| 137 |
|
|
@@ -148,7 +77,6 @@ def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:
|
|
| 148 |
return input_audio
|
| 149 |
|
| 150 |
|
| 151 |
-
|
| 152 |
def process_waveforms(device: str, compute_type: str):
|
| 153 |
|
| 154 |
left_waveform = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
|
|
@@ -157,23 +85,42 @@ def process_waveforms(device: str, compute_type: str):
|
|
| 157 |
return left_waveform, right_waveform
|
| 158 |
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
return text
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
-
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
|
| 176 |
-
# TODO refactor and rename this function
|
| 177 |
def post_process_transcription(transcription, max_repeats=2):
|
| 178 |
|
| 179 |
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
|
@@ -226,70 +173,15 @@ def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
|
|
| 226 |
|
| 227 |
return merged_transcription.strip()
|
| 228 |
|
| 229 |
-
|
| 230 |
-
def get_segments(result, speaker_label):
|
| 231 |
-
|
| 232 |
-
segments = result
|
| 233 |
-
final_segments = [
|
| 234 |
-
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
| 235 |
-
for seg in segments if seg.text
|
| 236 |
-
]
|
| 237 |
-
|
| 238 |
-
return final_segments
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
def post_process_transcripts(left_result, right_result):
|
| 242 |
-
|
| 243 |
-
left_segs = get_segments(left_result, "Speaker 1")
|
| 244 |
-
right_segs = get_segments(right_result, "Speaker 2")
|
| 245 |
-
|
| 246 |
-
merged_transcript = sorted(
|
| 247 |
-
left_segs + right_segs,
|
| 248 |
-
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
clean_output = ""
|
| 252 |
-
for start, end, speaker, text in merged_transcript:
|
| 253 |
-
clean_output += f"[{speaker}]: {text}\n"
|
| 254 |
-
clean_output = clean_output.strip()
|
| 255 |
-
|
| 256 |
-
return clean_output
|
| 257 |
-
|
| 258 |
-
|
| 259 |
def cleanup_temp_files(*file_paths):
|
| 260 |
|
| 261 |
for path in file_paths:
|
| 262 |
if path and os.path.exists(path):
|
| 263 |
-
if DEBUG_MODE: print(f"Removing path: {path}")
|
| 264 |
os.remove(path)
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
def generate(audio_path, use_v2_fast):
|
| 270 |
-
|
| 271 |
-
load_cudnn()
|
| 272 |
-
device, requested_compute_type = get_settings()
|
| 273 |
-
model = load_model(use_v2_fast, device, requested_compute_type)
|
| 274 |
-
|
| 275 |
-
if use_v2_fast:
|
| 276 |
-
actual_compute_type = model.model.compute_type
|
| 277 |
-
else:
|
| 278 |
-
actual_compute_type = "float32" #HF pipeline safe default
|
| 279 |
-
|
| 280 |
-
if DEBUG_MODE:
|
| 281 |
-
print(f"[SETTINGS] Requested compute_type: {requested_compute_type}")
|
| 282 |
-
print(f"[SETTINGS] Actual compute_type: {actual_compute_type}")
|
| 283 |
-
|
| 284 |
-
if use_v2_fast:
|
| 285 |
-
split_input_stereo_channels(audio_path)
|
| 286 |
-
left_waveform, right_waveform = process_waveforms(device, actual_compute_type)
|
| 287 |
-
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model)
|
| 288 |
-
output = post_process_transcripts(left_result, right_result)
|
| 289 |
-
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
|
| 290 |
-
else:
|
| 291 |
-
audio = format_audio(audio_path, actual_compute_type, device)
|
| 292 |
-
merged_results = transcribe_pipeline(audio, model)
|
| 293 |
-
output = post_process_transcription(merged_results)
|
| 294 |
-
|
| 295 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import torchaudio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
+
import re
|
| 6 |
+
from pydub import AudioSegment
|
| 7 |
+
from settings import DEBUG_MODE, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ
|
| 8 |
+
import soundfile as sf
|
| 9 |
|
| 10 |
+
# ------------------ DEBUG UTILITIES ------------------
|
| 11 |
+
def debug_print(*args, **kwargs):
|
| 12 |
+
if DEBUG_MODE:
|
| 13 |
+
print(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# ------------------ Device Settings ------------------
|
| 16 |
def get_settings():
|
| 17 |
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
compute_type = "default"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")
|
| 22 |
|
| 23 |
return device, compute_type
|
| 24 |
|
| 25 |
+
# ------------------ Audio Utilities ------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def split_input_stereo_channels(audio_path):
|
| 27 |
|
| 28 |
ext = os.path.splitext(audio_path)[1].lower()
|
|
|
|
| 39 |
if len(channels) != 2:
|
| 40 |
raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")
|
| 41 |
|
| 42 |
+
channels[0].export(LEFT_CHANNEL_TEMP_PATH, format="wav")
|
| 43 |
+
channels[1].export(RIGHT_CHANNEL_TEMP_PATH, format="wav")
|
| 44 |
|
| 45 |
|
| 46 |
def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:
|
|
|
|
| 57 |
|
| 58 |
return audio_np_dtype
|
| 59 |
|
|
|
|
| 60 |
def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:
|
| 61 |
|
| 62 |
input_audio, sample_rate = torchaudio.load(audio_path)
|
| 63 |
+
|
| 64 |
if input_audio.shape[0] == 2:
|
| 65 |
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
|
| 66 |
|
|
|
|
| 77 |
return input_audio
|
| 78 |
|
| 79 |
|
|
|
|
| 80 |
def process_waveforms(device: str, compute_type: str):
|
| 81 |
|
| 82 |
left_waveform = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
|
|
|
|
| 85 |
return left_waveform, right_waveform
|
| 86 |
|
| 87 |
|
| 88 |
+
# ------------------ Post-processing ------------------
|
| 89 |
+
def get_segments(result, speaker_label):
|
|
|
|
| 90 |
|
| 91 |
+
segments = result
|
| 92 |
+
final_segments = [
|
| 93 |
+
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
| 94 |
+
for seg in segments if seg.text
|
| 95 |
+
]
|
| 96 |
|
| 97 |
+
return final_segments
|
| 98 |
|
| 99 |
+
def post_process_transcripts(left_result, right_result, civil_channel):
|
|
|
|
| 100 |
|
| 101 |
+
if civil_channel == "Left":
|
| 102 |
+
civil_segs = get_segments(left_result, "Civil")
|
| 103 |
+
operador_segs = get_segments(right_result, "Operador")
|
| 104 |
+
else:
|
| 105 |
+
civil_segs = get_segments(right_result, "Civil")
|
| 106 |
+
operador_segs = get_segments(left_result, "Operador")
|
| 107 |
|
| 108 |
+
merged_transcript = sorted(
|
| 109 |
+
operador_segs + civil_segs,
|
| 110 |
+
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
clean_output_asr = ""
|
| 114 |
+
clean_output_meteo = ""
|
| 115 |
+
for start, end, speaker, text in merged_transcript:
|
| 116 |
+
clean_output_asr += f"[{speaker}]: {text}\n"
|
| 117 |
+
clean_output_meteo += f"{text}"
|
| 118 |
+
clean_output_asr = clean_output_asr.strip()
|
| 119 |
+
clean_output_meteo = clean_output_meteo.strip()
|
| 120 |
+
|
| 121 |
+
return clean_output_asr, clean_output_meteo
|
| 122 |
|
| 123 |
|
|
|
|
| 124 |
def post_process_transcription(transcription, max_repeats=2):
|
| 125 |
|
| 126 |
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
|
|
|
| 173 |
|
| 174 |
return merged_transcription.strip()
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
def cleanup_temp_files(*file_paths):
|
| 177 |
|
| 178 |
for path in file_paths:
|
| 179 |
if path and os.path.exists(path):
|
|
|
|
| 180 |
os.remove(path)
|
| 181 |
|
| 182 |
+
def sec_to_hhmmss(seconds):
|
| 183 |
+
h = int(seconds // 3600)
|
| 184 |
+
m = int((seconds % 3600) // 60)
|
| 185 |
+
s = int(seconds % 60)
|
| 186 |
+
return f"{h:02d}:{m:02d}:{s:02d}"
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meteo_detector.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def classify_meteo_event(text, model, threshold=0.0):
|
| 2 |
+
result = model(text, truncation=True, max_length=512)[0]
|
| 3 |
+
|
| 4 |
+
label = result[0]["label"]
|
| 5 |
+
score = result[0]["score"]
|
| 6 |
+
|
| 7 |
+
if label != "none" and round(score, 2) <= threshold:
|
| 8 |
+
label = "none"
|
| 9 |
+
|
| 10 |
+
event = label
|
| 11 |
+
|
| 12 |
+
return event
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
torch
|
| 2 |
torchaudio
|
| 3 |
-
transformers==4.
|
| 4 |
ctranslate2==4.6.0
|
| 5 |
faster_whisper==1.2.0
|
| 6 |
hf_transfer==0.1.9
|
|
@@ -13,4 +13,4 @@ aina-gradio-theme==2.3
|
|
| 13 |
spaces==0.39.0
|
| 14 |
peft==0.11.1
|
| 15 |
whisper_timestamped==1.15.8
|
| 16 |
-
typing==3.7.4.3
|
|
|
|
| 1 |
torch
|
| 2 |
torchaudio
|
| 3 |
+
transformers==4.40.2 #gated models
|
| 4 |
ctranslate2==4.6.0
|
| 5 |
faster_whisper==1.2.0
|
| 6 |
hf_transfer==0.1.9
|
|
|
|
| 13 |
spaces==0.39.0
|
| 14 |
peft==0.11.1
|
| 15 |
whisper_timestamped==1.15.8
|
| 16 |
+
typing==3.7.4.3
|
requirements_dev.txt
DELETED
|
@@ -1,171 +0,0 @@
|
|
| 1 |
-
accelerate==1.10.0
|
| 2 |
-
aina-gradio-theme==2.3
|
| 3 |
-
aiofiles==24.1.0
|
| 4 |
-
aiohappyeyeballs==2.6.1
|
| 5 |
-
aiohttp==3.12.15
|
| 6 |
-
aiosignal==1.4.0
|
| 7 |
-
alembic==1.16.4
|
| 8 |
-
annotated-types==0.7.0
|
| 9 |
-
antlr4-python3-runtime==4.9.3
|
| 10 |
-
anyio==4.10.0
|
| 11 |
-
asteroid-filterbanks==0.4.0
|
| 12 |
-
async-timeout==5.0.1
|
| 13 |
-
attrs==25.3.0
|
| 14 |
-
audioread==3.0.1
|
| 15 |
-
av==15.0.0
|
| 16 |
-
Brotli==1.1.0
|
| 17 |
-
certifi==2025.8.3
|
| 18 |
-
cffi==1.17.1
|
| 19 |
-
charset-normalizer==3.4.2
|
| 20 |
-
click==8.2.1
|
| 21 |
-
coloredlogs==15.0.1
|
| 22 |
-
colorlog==6.9.0
|
| 23 |
-
contourpy==1.3.2
|
| 24 |
-
ctranslate2==4.6.0
|
| 25 |
-
cycler==0.12.1
|
| 26 |
-
Cython==3.1.2
|
| 27 |
-
decorator==5.2.1
|
| 28 |
-
docopt==0.6.2
|
| 29 |
-
dtw-python==1.5.3
|
| 30 |
-
einops==0.8.1
|
| 31 |
-
exceptiongroup==1.3.0
|
| 32 |
-
fastapi==0.116.1
|
| 33 |
-
faster-whisper==1.2.0
|
| 34 |
-
ffmpeg-python==0.2.0
|
| 35 |
-
ffmpy==0.6.1
|
| 36 |
-
filelock==3.18.0
|
| 37 |
-
flatbuffers==25.2.10
|
| 38 |
-
fonttools==4.59.0
|
| 39 |
-
frozenlist==1.7.0
|
| 40 |
-
fsspec==2025.7.0
|
| 41 |
-
future==1.0.0
|
| 42 |
-
gradio==5.41.1
|
| 43 |
-
gradio_client==1.11.0
|
| 44 |
-
greenlet==3.2.3
|
| 45 |
-
groovy==0.1.2
|
| 46 |
-
h11==0.16.0
|
| 47 |
-
hf-xet==1.1.7
|
| 48 |
-
hf_transfer==0.1.9
|
| 49 |
-
httpcore==1.0.9
|
| 50 |
-
httpx==0.28.1
|
| 51 |
-
huggingface-hub==0.34.3
|
| 52 |
-
humanfriendly==10.0
|
| 53 |
-
HyperPyYAML==1.2.2
|
| 54 |
-
idna==3.10
|
| 55 |
-
Jinja2==3.1.6
|
| 56 |
-
joblib==1.5.1
|
| 57 |
-
julius==0.2.7
|
| 58 |
-
kiwisolver==1.4.8
|
| 59 |
-
lazy_loader==0.4
|
| 60 |
-
librosa==0.10.1
|
| 61 |
-
lightning==2.5.2
|
| 62 |
-
lightning-utilities==0.15.2
|
| 63 |
-
llvmlite==0.44.0
|
| 64 |
-
Mako==1.3.10
|
| 65 |
-
markdown-it-py==3.0.0
|
| 66 |
-
MarkupSafe==3.0.2
|
| 67 |
-
matplotlib==3.10.5
|
| 68 |
-
mdurl==0.1.2
|
| 69 |
-
more-itertools==10.7.0
|
| 70 |
-
mpmath==1.3.0
|
| 71 |
-
msgpack==1.1.1
|
| 72 |
-
multidict==6.6.3
|
| 73 |
-
networkx==3.4.2
|
| 74 |
-
numba==0.61.2
|
| 75 |
-
numpy==2.2.6
|
| 76 |
-
nvidia-cublas-cu12==12.8.4.1
|
| 77 |
-
nvidia-cuda-cupti-cu12==12.8.90
|
| 78 |
-
nvidia-cuda-nvrtc-cu12==12.8.93
|
| 79 |
-
nvidia-cuda-runtime-cu12==12.8.90
|
| 80 |
-
nvidia-cudnn-cu12==9.10.2.21
|
| 81 |
-
nvidia-cufft-cu12==11.3.3.83
|
| 82 |
-
nvidia-cufile-cu12==1.13.1.3
|
| 83 |
-
nvidia-curand-cu12==10.3.9.90
|
| 84 |
-
nvidia-cusolver-cu12==11.7.3.90
|
| 85 |
-
nvidia-cusparse-cu12==12.5.8.93
|
| 86 |
-
nvidia-cusparselt-cu12==0.7.1
|
| 87 |
-
nvidia-nccl-cu12==2.27.3
|
| 88 |
-
nvidia-nvjitlink-cu12==12.8.93
|
| 89 |
-
nvidia-nvtx-cu12==12.8.90
|
| 90 |
-
omegaconf==2.3.0
|
| 91 |
-
onnxruntime==1.22.1
|
| 92 |
-
openai-whisper==20250625
|
| 93 |
-
optuna==4.4.0
|
| 94 |
-
orjson==3.11.1
|
| 95 |
-
packaging==25.0
|
| 96 |
-
pandas==2.3.1
|
| 97 |
-
peft==0.11.1
|
| 98 |
-
pillow==11.3.0
|
| 99 |
-
platformdirs==4.3.8
|
| 100 |
-
pooch==1.8.2
|
| 101 |
-
primePy==1.3
|
| 102 |
-
propcache==0.3.2
|
| 103 |
-
protobuf==6.31.1
|
| 104 |
-
psutil==5.9.8
|
| 105 |
-
pyannote.audio==3.3.2
|
| 106 |
-
pyannote.core==5.0.0
|
| 107 |
-
pyannote.database==5.1.3
|
| 108 |
-
pyannote.metrics==3.2.1
|
| 109 |
-
pyannote.pipeline==3.0.1
|
| 110 |
-
pycparser==2.22
|
| 111 |
-
pydantic==2.11.7
|
| 112 |
-
pydantic_core==2.33.2
|
| 113 |
-
pydub==0.25.1
|
| 114 |
-
Pygments==2.19.2
|
| 115 |
-
pyparsing==3.2.3
|
| 116 |
-
python-dateutil==2.9.0.post0
|
| 117 |
-
python-multipart==0.0.20
|
| 118 |
-
pytorch-lightning==2.5.2
|
| 119 |
-
pytorch-metric-learning==2.8.1
|
| 120 |
-
pytz==2025.2
|
| 121 |
-
PyYAML==6.0.2
|
| 122 |
-
regex==2025.7.34
|
| 123 |
-
requests==2.32.4
|
| 124 |
-
rich==14.1.0
|
| 125 |
-
ruamel.yaml==0.18.14
|
| 126 |
-
ruamel.yaml.clib==0.2.12
|
| 127 |
-
ruff==0.12.7
|
| 128 |
-
safehttpx==0.1.6
|
| 129 |
-
safetensors==0.6.1
|
| 130 |
-
scikit-learn==1.7.1
|
| 131 |
-
scipy==1.15.3
|
| 132 |
-
semantic-version==2.10.0
|
| 133 |
-
semver==3.0.4
|
| 134 |
-
sentencepiece==0.2.0
|
| 135 |
-
shellingham==1.5.4
|
| 136 |
-
six==1.17.0
|
| 137 |
-
sniffio==1.3.1
|
| 138 |
-
sortedcontainers==2.4.0
|
| 139 |
-
soundfile==0.13.1
|
| 140 |
-
soxr==0.5.0.post1
|
| 141 |
-
spaces==0.39.0
|
| 142 |
-
speechbrain==1.0.3
|
| 143 |
-
SQLAlchemy==2.0.42
|
| 144 |
-
starlette==0.47.2
|
| 145 |
-
sympy==1.14.0
|
| 146 |
-
tabulate==0.9.0
|
| 147 |
-
tensorboardX==2.6.4
|
| 148 |
-
threadpoolctl==3.6.0
|
| 149 |
-
tiktoken==0.10.0
|
| 150 |
-
tokenizers==0.21.4
|
| 151 |
-
tomli==2.2.1
|
| 152 |
-
tomlkit==0.13.3
|
| 153 |
-
torch==2.8.0
|
| 154 |
-
torch-audiomentations==0.12.0
|
| 155 |
-
torch_pitch_shift==1.2.5
|
| 156 |
-
torchaudio==2.8.0
|
| 157 |
-
torchmetrics==1.8.0
|
| 158 |
-
tqdm==4.67.1
|
| 159 |
-
transformers==4.55.0
|
| 160 |
-
triton==3.4.0
|
| 161 |
-
typer==0.16.0
|
| 162 |
-
typing==3.7.4.3
|
| 163 |
-
typing-inspection==0.4.1
|
| 164 |
-
typing_extensions==4.14.1
|
| 165 |
-
tzdata==2025.2
|
| 166 |
-
urllib3==2.5.0
|
| 167 |
-
uvicorn==0.35.0
|
| 168 |
-
websockets==15.0.1
|
| 169 |
-
whisper-timestamped==1.15.8
|
| 170 |
-
yarl==1.20.1
|
| 171 |
-
yt-dlp==2025.7.21
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
settings.py
CHANGED
|
@@ -1,8 +1,13 @@
|
|
| 1 |
DEBUG_MODE = True
|
| 2 |
MODEL_PATH_V1 = "projecte-aina/whisper-large-v3-tiny-caesar"
|
| 3 |
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
|
|
|
|
|
|
| 4 |
LEFT_CHANNEL_TEMP_PATH = "temp_mono_speaker2.wav"
|
| 5 |
RIGHT_CHANNEL_TEMP_PATH = "temp_mono_speaker1.wav"
|
| 6 |
RESAMPLING_FREQ = 16000
|
|
|
|
|
|
|
|
|
|
| 7 |
BATCH_SIZE = 1
|
| 8 |
TASK = "transcribe"
|
|
|
|
| 1 |
DEBUG_MODE = True
|
| 2 |
MODEL_PATH_V1 = "projecte-aina/whisper-large-v3-tiny-caesar"
|
| 3 |
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
| 4 |
+
MODEL_PATH_AGE_GENDER = "tiantiaf/wavlm-large-age-sex"
|
| 5 |
+
MODEL_PATH_METEO = "jayebaku/XLMRoberta-twitter-crexdata-flood-wildfire-detector"
|
| 6 |
LEFT_CHANNEL_TEMP_PATH = "temp_mono_speaker2.wav"
|
| 7 |
RIGHT_CHANNEL_TEMP_PATH = "temp_mono_speaker1.wav"
|
| 8 |
RESAMPLING_FREQ = 16000
|
| 9 |
+
ORIGINAL_FREQ = 8000
|
| 10 |
+
MIN_SIL_DURATION = 3.0
|
| 11 |
+
SIL_THRESHOLD = -35
|
| 12 |
BATCH_SIZE = 1
|
| 13 |
TASK = "transcribe"
|
shout_detector.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import librosa
|
| 2 |
+
from scipy.signal import butter, sosfilt
|
| 3 |
+
import numpy as np
|
| 4 |
+
from settings import DEBUG_MODE, RESAMPLING_FREQ
|
| 5 |
+
from audio_utils import sec_to_hhmmss
|
| 6 |
+
|
| 7 |
+
def bandpass_filter(audio_path, RESAMPLING_FREQ, low=300, high=3400):
|
| 8 |
+
sos = butter(4, [low / (RESAMPLING_FREQ / 2), high / (RESAMPLING_FREQ / 2)], btype="band", output="sos")
|
| 9 |
+
return sosfilt(sos, audio_path)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def extract_features(audio_path, RESAMPLING_FREQ, frame=0.05):
|
| 13 |
+
hop = int(RESAMPLING_FREQ * frame)
|
| 14 |
+
rms = librosa.feature.rms(y=audio_path, hop_length=hop)[0]
|
| 15 |
+
flux = librosa.onset.onset_strength(y=audio_path, sr=RESAMPLING_FREQ, hop_length=hop)
|
| 16 |
+
rolloff = librosa.feature.spectral_rolloff(y=audio_path, sr=RESAMPLING_FREQ, hop_length=hop)[0]
|
| 17 |
+
harmonic = librosa.effects.harmonic(audio_path)
|
| 18 |
+
percussive = audio_path - harmonic
|
| 19 |
+
hnr = librosa.feature.rms(y=harmonic, hop_length=hop)[0] / (librosa.feature.rms(y=percussive, hop_length=hop)[0] + 1e-6)
|
| 20 |
+
|
| 21 |
+
times = librosa.frames_to_time(np.arange(len(rms)), sr=RESAMPLING_FREQ, hop_length=hop)
|
| 22 |
+
return rms, flux, rolloff, hnr, times
|
| 23 |
+
|
| 24 |
+
def compute_intensity(rms, flux, rolloff, hnr):
|
| 25 |
+
rms_w, flux_w, roll_w, hnr_w = 3.0, 1.3, 1.0, 0.8
|
| 26 |
+
|
| 27 |
+
r = (rms - np.mean(rms[:30])) / (np.std(rms[:30]) + 1e-5)
|
| 28 |
+
f = flux / (np.percentile(flux, 90) + 1e-6)
|
| 29 |
+
ro = rolloff / np.max(rolloff)
|
| 30 |
+
hn = hnr / np.max(hnr)
|
| 31 |
+
|
| 32 |
+
intensity = (
|
| 33 |
+
rms_w * np.clip(r, 0, None)
|
| 34 |
+
+ flux_w * f
|
| 35 |
+
+ roll_w * ro
|
| 36 |
+
+ hnr_w * (1 - hn)
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
intensity = np.maximum(intensity, 0)
|
| 40 |
+
intensity = librosa.util.normalize(intensity)
|
| 41 |
+
return intensity
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def segment_intensity(times, intensity, thr=0.25):
|
| 45 |
+
ema_alpha = 0.45
|
| 46 |
+
hangover = int(0.15 / (times[1] - times[0]))
|
| 47 |
+
|
| 48 |
+
smooth = np.copy(intensity)
|
| 49 |
+
for i in range(1, len(intensity)):
|
| 50 |
+
smooth[i] = ema_alpha * intensity[i] + (1 - ema_alpha) * smooth[i - 1]
|
| 51 |
+
|
| 52 |
+
on_thr, off_thr = thr, thr * 0.6
|
| 53 |
+
active = False
|
| 54 |
+
counter = 0
|
| 55 |
+
events = []
|
| 56 |
+
start = None
|
| 57 |
+
|
| 58 |
+
for i, val in enumerate(smooth):
|
| 59 |
+
if not active and val >= on_thr:
|
| 60 |
+
active = True
|
| 61 |
+
start = times[i]
|
| 62 |
+
|
| 63 |
+
if active and val >= off_thr:
|
| 64 |
+
counter = hangover
|
| 65 |
+
elif active:
|
| 66 |
+
counter -= 1
|
| 67 |
+
if counter <= 0:
|
| 68 |
+
active = False
|
| 69 |
+
events.append((start, times[i]))
|
| 70 |
+
start = None
|
| 71 |
+
|
| 72 |
+
if active and start is not None:
|
| 73 |
+
events.append((start, times[-1]))
|
| 74 |
+
return events, smooth
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def assign_levels(events, intensity, times):
|
| 78 |
+
results = []
|
| 79 |
+
for st, en in events:
|
| 80 |
+
mask = (times >= st) & (times <= en)
|
| 81 |
+
if np.sum(mask) == 0:
|
| 82 |
+
continue
|
| 83 |
+
|
| 84 |
+
med = np.median(intensity[mask])
|
| 85 |
+
max_val = np.max(intensity[mask])
|
| 86 |
+
|
| 87 |
+
if med > 0.8:
|
| 88 |
+
lvl = "4 gritando"
|
| 89 |
+
elif med > 0.6:
|
| 90 |
+
lvl = "3 elevado"
|
| 91 |
+
elif med > 0.4:
|
| 92 |
+
lvl = "2 intermedio"
|
| 93 |
+
else:
|
| 94 |
+
lvl = "1 bajo"
|
| 95 |
+
|
| 96 |
+
results.append((st, en, lvl, med, max_val))
|
| 97 |
+
return results
|
| 98 |
+
|
| 99 |
+
def merge_adjacent_segments(results, gap_threshold=0.3):
|
| 100 |
+
|
| 101 |
+
if not results:
|
| 102 |
+
return []
|
| 103 |
+
|
| 104 |
+
merged = []
|
| 105 |
+
cur_st, cur_en, cur_lvl, cur_med, cur_max = results[0]
|
| 106 |
+
|
| 107 |
+
for st, en, lvl, med, mx in results[1:]:
|
| 108 |
+
if lvl == cur_lvl and st - cur_en <= gap_threshold:
|
| 109 |
+
cur_en = en
|
| 110 |
+
cur_med = (cur_med + med) / 2
|
| 111 |
+
cur_max = max(cur_max, mx)
|
| 112 |
+
else:
|
| 113 |
+
merged.append((cur_st, cur_en, cur_lvl, cur_med, cur_max))
|
| 114 |
+
cur_st, cur_en, cur_lvl, cur_med, cur_max = st, en, lvl, med, mx
|
| 115 |
+
|
| 116 |
+
merged.append((cur_st, cur_en, cur_lvl, cur_med, cur_max))
|
| 117 |
+
return merged
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def shout(audio_path):
|
| 121 |
+
|
| 122 |
+
if DEBUG_MODE:
|
| 123 |
+
print(f"[MODEL LOADING] Loading shout model")
|
| 124 |
+
|
| 125 |
+
y, sr = librosa.load(audio_path, sr=RESAMPLING_FREQ, mono=True)
|
| 126 |
+
y = bandpass_filter(y, sr)
|
| 127 |
+
|
| 128 |
+
rms, flux, rolloff, hnr, times = extract_features(y, sr)
|
| 129 |
+
intensity = compute_intensity(rms, flux, rolloff, hnr)
|
| 130 |
+
events, _ = segment_intensity(times, intensity, thr=0.18)
|
| 131 |
+
results = assign_levels(events, intensity, times)
|
| 132 |
+
results = merge_adjacent_segments(results, gap_threshold=1)
|
| 133 |
+
|
| 134 |
+
results = [
|
| 135 |
+
(st, en, lvl, med, max_val)
|
| 136 |
+
for st, en, lvl, med, max_val in results
|
| 137 |
+
if "elevado" in lvl or "gritando" in lvl
|
| 138 |
+
|
| 139 |
+
]
|
| 140 |
+
formatted = []
|
| 141 |
+
for st, en, lvl, med, max_val in results:
|
| 142 |
+
formatted.append(f"{sec_to_hhmmss(st)} – {sec_to_hhmmss(en)} | volumen de voz: {lvl}")
|
| 143 |
+
|
| 144 |
+
if not formatted:
|
| 145 |
+
return "No se detectaron gritos o voces elevadas"
|
| 146 |
+
|
| 147 |
+
return "\n".join(formatted)
|
| 148 |
+
|
silence_detector.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import librosa
|
| 2 |
+
import numpy as np
|
| 3 |
+
from settings import DEBUG_MODE, RESAMPLING_FREQ, ORIGINAL_FREQ, MIN_SIL_DURATION, SIL_THRESHOLD
|
| 4 |
+
from audio_utils import sec_to_hhmmss
|
| 5 |
+
|
| 6 |
+
def silence(audio_path):
|
| 7 |
+
|
| 8 |
+
if DEBUG_MODE:
|
| 9 |
+
print(f"[MODEL LOADING] Loading silence model")
|
| 10 |
+
|
| 11 |
+
y, sr = librosa.load(audio_path, sr=ORIGINAL_FREQ, mono=True) #merging stereo2mono
|
| 12 |
+
y = librosa.resample(y, orig_sr=ORIGINAL_FREQ, target_sr=RESAMPLING_FREQ)
|
| 13 |
+
y = y / np.max(np.abs(y))
|
| 14 |
+
|
| 15 |
+
frame_length = int(0.1 * RESAMPLING_FREQ)
|
| 16 |
+
hop_length = frame_length
|
| 17 |
+
rms = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
|
| 18 |
+
rms_db = librosa.amplitude_to_db(rms, ref=np.max)
|
| 19 |
+
|
| 20 |
+
silence_mask = rms_db < SIL_THRESHOLD
|
| 21 |
+
frame_duration = hop_length / RESAMPLING_FREQ
|
| 22 |
+
|
| 23 |
+
silence_segments = []
|
| 24 |
+
start = None
|
| 25 |
+
for i, silent in enumerate(silence_mask):
|
| 26 |
+
if silent and start is None:
|
| 27 |
+
start = i * frame_duration
|
| 28 |
+
elif not silent and start is not None:
|
| 29 |
+
end = i * frame_duration
|
| 30 |
+
if end - start >= MIN_SIL_DURATION:
|
| 31 |
+
silence_segments.append((start, end))
|
| 32 |
+
start = None
|
| 33 |
+
if start is not None:
|
| 34 |
+
end = len(silence_mask) * frame_duration
|
| 35 |
+
if end - start >= MIN_SIL_DURATION:
|
| 36 |
+
silence_segments.append((start, end))
|
| 37 |
+
|
| 38 |
+
if silence_segments:
|
| 39 |
+
events = [f"{sec_to_hhmmss(s)} – {sec_to_hhmmss(e)}" for s, e in silence_segments]
|
| 40 |
+
event = "Silencios detectados en: " + ", ".join(events)
|
| 41 |
+
else:
|
| 42 |
+
event = "No se detectaron silencios prolongados"
|
| 43 |
+
|
| 44 |
+
return event
|
whisper_cs.py
DELETED
|
@@ -1,382 +0,0 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
from pydub import AudioSegment
|
| 3 |
-
import os
|
| 4 |
-
import torchaudio
|
| 5 |
-
import torch
|
| 6 |
-
import re
|
| 7 |
-
import whisper_timestamped as whisper_ts
|
| 8 |
-
from typing import Dict
|
| 9 |
-
from faster_whisper import WhisperModel
|
| 10 |
-
|
| 11 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
| 12 |
-
torch_dtype = torch.float32
|
| 13 |
-
|
| 14 |
-
DEBUG_MODE = True
|
| 15 |
-
MODEL_PATH_V2 = "langtech-veu/whisper-timestamped-cs"
|
| 16 |
-
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
| 17 |
-
#DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
-
#print("[INFO] CUDA available:", torch.cuda.is_available())
|
| 19 |
-
|
| 20 |
-
def clean_text(input_text):
|
| 21 |
-
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
|
| 22 |
-
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
|
| 23 |
-
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text)
|
| 24 |
-
return ' '.join(output_text.split()).lower()
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def split_stereo_channels(audio_path):
|
| 28 |
-
ext = os.path.splitext(audio_path)[1].lower()
|
| 29 |
-
|
| 30 |
-
if ext == ".wav":
|
| 31 |
-
audio = AudioSegment.from_wav(audio_path)
|
| 32 |
-
elif ext == ".mp3":
|
| 33 |
-
audio = AudioSegment.from_file(audio_path, format="mp3")
|
| 34 |
-
else:
|
| 35 |
-
raise ValueError(f"Unsupported file format: {audio_path}")
|
| 36 |
-
|
| 37 |
-
channels = audio.split_to_mono()
|
| 38 |
-
if len(channels) != 2:
|
| 39 |
-
raise ValueError(f"Audio {audio_path} does not have 2 channels.")
|
| 40 |
-
|
| 41 |
-
channels[0].export(f"temp_mono_speaker1.wav", format="wav") # Right
|
| 42 |
-
channels[1].export(f"temp_mono_speaker2.wav", format="wav") # Left
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def format_audio(audio_path):
|
| 46 |
-
input_audio, sample_rate = torchaudio.load(audio_path)
|
| 47 |
-
if input_audio.shape[0] == 2:
|
| 48 |
-
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
|
| 49 |
-
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
| 50 |
-
input_audio = resampler(input_audio)
|
| 51 |
-
return input_audio.squeeze(), 16000
|
| 52 |
-
|
| 53 |
-
def post_process_transcription(transcription, max_repeats=2):
|
| 54 |
-
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
| 55 |
-
|
| 56 |
-
cleaned_tokens = []
|
| 57 |
-
repetition_count = 0
|
| 58 |
-
previous_token = None
|
| 59 |
-
|
| 60 |
-
for token in tokens:
|
| 61 |
-
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
|
| 62 |
-
|
| 63 |
-
if reduced_token == previous_token:
|
| 64 |
-
repetition_count += 1
|
| 65 |
-
if repetition_count <= max_repeats:
|
| 66 |
-
cleaned_tokens.append(reduced_token)
|
| 67 |
-
else:
|
| 68 |
-
repetition_count = 1
|
| 69 |
-
cleaned_tokens.append(reduced_token)
|
| 70 |
-
|
| 71 |
-
previous_token = reduced_token
|
| 72 |
-
|
| 73 |
-
cleaned_transcription = " ".join(cleaned_tokens)
|
| 74 |
-
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
|
| 75 |
-
|
| 76 |
-
return cleaned_transcription
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
|
| 80 |
-
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
|
| 81 |
-
merged_transcription = ''
|
| 82 |
-
current_speaker = None
|
| 83 |
-
current_segment = []
|
| 84 |
-
|
| 85 |
-
for i in range(1, len(segments) - 1, 2):
|
| 86 |
-
speaker_tag = segments[i]
|
| 87 |
-
text = segments[i + 1].strip()
|
| 88 |
-
|
| 89 |
-
speaker = re.search(r'\d{2}', speaker_tag).group()
|
| 90 |
-
|
| 91 |
-
if speaker == current_speaker:
|
| 92 |
-
current_segment.append(text)
|
| 93 |
-
else:
|
| 94 |
-
if current_speaker is not None:
|
| 95 |
-
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
| 96 |
-
current_speaker = speaker
|
| 97 |
-
current_segment = [text]
|
| 98 |
-
|
| 99 |
-
if current_speaker is not None:
|
| 100 |
-
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
| 101 |
-
|
| 102 |
-
return merged_transcription.strip()
|
| 103 |
-
|
| 104 |
-
def cleanup_temp_files(*file_paths):
|
| 105 |
-
|
| 106 |
-
if DEBUG_MODE: print(f"Entered cleanup_temp_files function...")
|
| 107 |
-
|
| 108 |
-
if DEBUG_MODE: print(f"file_paths: {file_paths}")
|
| 109 |
-
|
| 110 |
-
for path in file_paths:
|
| 111 |
-
if path and os.path.exists(path):
|
| 112 |
-
if DEBUG_MODE: print(f"Removing path: {path}")
|
| 113 |
-
os.remove(path)
|
| 114 |
-
|
| 115 |
-
if DEBUG_MODE: print(f"Exited cleanup_temp_files function.")
|
| 116 |
-
|
| 117 |
-
'''
|
| 118 |
-
try:
|
| 119 |
-
faster_model = WhisperModel(
|
| 120 |
-
MODEL_PATH_V2_FAST,
|
| 121 |
-
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 122 |
-
compute_type="float16" if torch.cuda.is_available() else "int8"
|
| 123 |
-
)
|
| 124 |
-
except RuntimeError as e:
|
| 125 |
-
print(f"[WARNING] Failed to load model on GPU: {e}")
|
| 126 |
-
faster_model = WhisperModel(
|
| 127 |
-
MODEL_PATH_V2_FAST,
|
| 128 |
-
device="cpu",
|
| 129 |
-
compute_type="int8"
|
| 130 |
-
)
|
| 131 |
-
'''
|
| 132 |
-
|
| 133 |
-
#faster_model = WhisperModel(MODEL_PATH_V2_FAST, device=DEVICE, compute_type="int8")
|
| 134 |
-
|
| 135 |
-
def load_whisper_model(model_path: str):
|
| 136 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 137 |
-
model = whisper_ts.load_model(model_path, device=device)
|
| 138 |
-
return model
|
| 139 |
-
|
| 140 |
-
def transcribe_audio(model, audio_path: str) -> Dict:
|
| 141 |
-
try:
|
| 142 |
-
result = whisper_ts.transcribe(
|
| 143 |
-
model,
|
| 144 |
-
audio_path,
|
| 145 |
-
beam_size=5,
|
| 146 |
-
best_of=5,
|
| 147 |
-
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 148 |
-
vad=False,
|
| 149 |
-
detect_disfluencies=True,
|
| 150 |
-
)
|
| 151 |
-
|
| 152 |
-
words = []
|
| 153 |
-
for segment in result.get('segments', []):
|
| 154 |
-
for word in segment.get('words', []):
|
| 155 |
-
word_text = word.get('word', '').strip()
|
| 156 |
-
if word_text.startswith(' '):
|
| 157 |
-
word_text = word_text[1:]
|
| 158 |
-
|
| 159 |
-
words.append({
|
| 160 |
-
'word': word_text,
|
| 161 |
-
'start': word.get('start', 0),
|
| 162 |
-
'end': word.get('end', 0),
|
| 163 |
-
'confidence': word.get('confidence', 0)
|
| 164 |
-
})
|
| 165 |
-
|
| 166 |
-
return {
|
| 167 |
-
'audio_path': audio_path,
|
| 168 |
-
'text': result['text'].strip(),
|
| 169 |
-
'segments': result.get('segments', []),
|
| 170 |
-
'words': words,
|
| 171 |
-
'duration': result.get('duration', 0),
|
| 172 |
-
'success': True
|
| 173 |
-
}
|
| 174 |
-
|
| 175 |
-
except Exception as e:
|
| 176 |
-
return {
|
| 177 |
-
'audio_path': audio_path,
|
| 178 |
-
'error': str(e),
|
| 179 |
-
'success': False
|
| 180 |
-
}
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
def generate(audio_path, use_v2_fast):
|
| 185 |
-
if DEBUG_MODE: print(f"Entering generate function...")
|
| 186 |
-
if DEBUG_MODE: print(f"use_v2_fast: {use_v2_fast}")
|
| 187 |
-
|
| 188 |
-
faster_model = None
|
| 189 |
-
|
| 190 |
-
if use_v2_fast:
|
| 191 |
-
if torch.cuda.is_available():
|
| 192 |
-
try:
|
| 193 |
-
if DEBUG_MODE: print("[INFO] GPU detected. Loading model on GPU with float16...")
|
| 194 |
-
faster_model = WhisperModel(
|
| 195 |
-
MODEL_PATH_V2_FAST,
|
| 196 |
-
device="cuda",
|
| 197 |
-
compute_type="float16"
|
| 198 |
-
)
|
| 199 |
-
except RuntimeError as e:
|
| 200 |
-
print(f"[WARNING] Failed to load model on GPU: {e}")
|
| 201 |
-
if DEBUG_MODE: print("[INFO] Falling back to CPU with int8...")
|
| 202 |
-
faster_model = WhisperModel(
|
| 203 |
-
MODEL_PATH_V2_FAST,
|
| 204 |
-
device="cpu",
|
| 205 |
-
compute_type="int8"
|
| 206 |
-
)
|
| 207 |
-
else:
|
| 208 |
-
if DEBUG_MODE: print("[INFO] No GPU detected. Loading model on CPU with int8...")
|
| 209 |
-
faster_model = WhisperModel(
|
| 210 |
-
MODEL_PATH_V2_FAST,
|
| 211 |
-
device="cpu",
|
| 212 |
-
compute_type="int8"
|
| 213 |
-
)
|
| 214 |
-
split_stereo_channels(audio_path)
|
| 215 |
-
left_channel_path = "temp_mono_speaker2.wav"
|
| 216 |
-
right_channel_path = "temp_mono_speaker1.wav"
|
| 217 |
-
|
| 218 |
-
left_waveform, _ = format_audio(left_channel_path)
|
| 219 |
-
right_waveform, _ = format_audio(right_channel_path)
|
| 220 |
-
|
| 221 |
-
left_waveform = left_waveform.numpy().astype("float32")
|
| 222 |
-
right_waveform = right_waveform.numpy().astype("float32")
|
| 223 |
-
|
| 224 |
-
left_result, _ = faster_model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
| 225 |
-
right_result, _ = faster_model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
| 226 |
-
|
| 227 |
-
left_result = list(left_result)
|
| 228 |
-
right_result = list(right_result)
|
| 229 |
-
|
| 230 |
-
def get_faster_segments(segments, speaker_label):
|
| 231 |
-
return [
|
| 232 |
-
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
| 233 |
-
for seg in segments if seg.text
|
| 234 |
-
]
|
| 235 |
-
|
| 236 |
-
left_segs = get_faster_segments(left_result, "Speaker 1")
|
| 237 |
-
right_segs = get_faster_segments(right_result, "Speaker 2")
|
| 238 |
-
|
| 239 |
-
merged_transcript = sorted(
|
| 240 |
-
left_segs + right_segs,
|
| 241 |
-
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
clean_output = ""
|
| 245 |
-
for start, end, speaker, text in merged_transcript:
|
| 246 |
-
clean_output += f"[{speaker}]: {text}\n"
|
| 247 |
-
|
| 248 |
-
if DEBUG_MODE: print(f"clean_output: {clean_output}")
|
| 249 |
-
|
| 250 |
-
else:
|
| 251 |
-
model = load_whisper_model(MODEL_PATH_V2)
|
| 252 |
-
split_stereo_channels(audio_path)
|
| 253 |
-
left_channel_path = "temp_mono_speaker2.wav"
|
| 254 |
-
right_channel_path = "temp_mono_speaker1.wav"
|
| 255 |
-
|
| 256 |
-
left_waveform, _ = format_audio(left_channel_path)
|
| 257 |
-
right_waveform, _ = format_audio(right_channel_path)
|
| 258 |
-
|
| 259 |
-
left_result = transcribe_audio(model, left_waveform)
|
| 260 |
-
right_result = transcribe_audio(model, right_waveform)
|
| 261 |
-
|
| 262 |
-
def get_segments(result, speaker_label):
|
| 263 |
-
segments = result.get("segments", [])
|
| 264 |
-
if not segments:
|
| 265 |
-
return []
|
| 266 |
-
return [
|
| 267 |
-
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label,
|
| 268 |
-
post_process_transcription(seg.get("text", "").strip()))
|
| 269 |
-
for seg in segments if seg.get("text")
|
| 270 |
-
]
|
| 271 |
-
|
| 272 |
-
left_segs = get_segments(left_result, "Speaker 1")
|
| 273 |
-
right_segs = get_segments(right_result, "Speaker 2")
|
| 274 |
-
|
| 275 |
-
merged_transcript = sorted(
|
| 276 |
-
left_segs + right_segs,
|
| 277 |
-
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
clean_output = ""
|
| 281 |
-
for start, end, speaker, text in merged_transcript:
|
| 282 |
-
clean_output += f"[{speaker}]: {text}\n"
|
| 283 |
-
|
| 284 |
-
cleanup_temp_files("temp_mono_speaker1.wav", "temp_mono_speaker2.wav")
|
| 285 |
-
|
| 286 |
-
if DEBUG_MODE: print(f"Exiting generate function...")
|
| 287 |
-
return clean_output.strip()
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
'''
|
| 291 |
-
def generate(audio_path, use_v2_fast):
|
| 292 |
-
|
| 293 |
-
if DEBUG_MODE: print(f"Entering generate function...")
|
| 294 |
-
if DEBUG_MODE: print(f"use_v2_fast: {use_v2_fast}")
|
| 295 |
-
|
| 296 |
-
if use_v2_fast:
|
| 297 |
-
split_stereo_channels(audio_path)
|
| 298 |
-
left_channel_path = "temp_mono_speaker2.wav"
|
| 299 |
-
right_channel_path = "temp_mono_speaker1.wav"
|
| 300 |
-
|
| 301 |
-
left_waveform, left_sr = format_audio(left_channel_path)
|
| 302 |
-
right_waveform, right_sr = format_audio(right_channel_path)
|
| 303 |
-
|
| 304 |
-
left_waveform = left_waveform.numpy().astype("float32")
|
| 305 |
-
right_waveform = right_waveform.numpy().astype("float32")
|
| 306 |
-
|
| 307 |
-
left_result, info = faster_model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
| 308 |
-
right_result, info = faster_model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
| 309 |
-
|
| 310 |
-
left_result = list(left_result)
|
| 311 |
-
right_result = list(right_result)
|
| 312 |
-
|
| 313 |
-
def get_faster_segments(segments, speaker_label):
|
| 314 |
-
return [
|
| 315 |
-
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
| 316 |
-
for seg in segments if seg.text
|
| 317 |
-
]
|
| 318 |
-
|
| 319 |
-
left_segs = get_faster_segments(left_result, "Speaker 1")
|
| 320 |
-
right_segs = get_faster_segments(right_result, "Speaker 2")
|
| 321 |
-
|
| 322 |
-
merged_transcript = sorted(
|
| 323 |
-
left_segs + right_segs,
|
| 324 |
-
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
clean_output = ""
|
| 328 |
-
for start, end, speaker, text in merged_transcript:
|
| 329 |
-
clean_output += f"[{speaker}]: {text}\n"
|
| 330 |
-
|
| 331 |
-
# FIX Seems that post_merge_consecutive_segments_from_text returns an empty string
|
| 332 |
-
#clean_output = post_merge_consecutive_segments_from_text(clean_output)
|
| 333 |
-
#print('clean_output',clean_output)
|
| 334 |
-
|
| 335 |
-
if DEBUG_MODE: print(f"clean_output: {clean_output}")
|
| 336 |
-
|
| 337 |
-
else:
|
| 338 |
-
model = load_whisper_model(MODEL_PATH_V2)
|
| 339 |
-
split_stereo_channels(audio_path)
|
| 340 |
-
|
| 341 |
-
left_channel_path = "temp_mono_speaker2.wav"
|
| 342 |
-
right_channel_path = "temp_mono_speaker1.wav"
|
| 343 |
-
|
| 344 |
-
left_waveform, left_sr = format_audio(left_channel_path)
|
| 345 |
-
right_waveform, right_sr = format_audio(right_channel_path)
|
| 346 |
-
left_result = transcribe_audio(model, left_waveform)
|
| 347 |
-
right_result = transcribe_audio(model, right_waveform)
|
| 348 |
-
|
| 349 |
-
def get_segments(result, speaker_label):
|
| 350 |
-
segments = result.get("segments", [])
|
| 351 |
-
if not segments:
|
| 352 |
-
return []
|
| 353 |
-
return [
|
| 354 |
-
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label, post_process_transcription(seg.get("text", "").strip()))
|
| 355 |
-
for seg in segments if seg.get("text")
|
| 356 |
-
]
|
| 357 |
-
|
| 358 |
-
left_segs = get_segments(left_result, "Speaker 1")
|
| 359 |
-
right_segs = get_segments(right_result, "Speaker 2")
|
| 360 |
-
|
| 361 |
-
merged_transcript = sorted(
|
| 362 |
-
left_segs + right_segs,
|
| 363 |
-
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
output = ""
|
| 367 |
-
for start, end, speaker, text in merged_transcript:
|
| 368 |
-
output += f"[{speaker}]: {text}\n"
|
| 369 |
-
|
| 370 |
-
clean_output = output.strip()
|
| 371 |
-
|
| 372 |
-
if DEBUG_MODE: print(f"Clean output generated.")
|
| 373 |
-
|
| 374 |
-
cleanup_temp_files(
|
| 375 |
-
"temp_mono_speaker1.wav",
|
| 376 |
-
"temp_mono_speaker2.wav"
|
| 377 |
-
)
|
| 378 |
-
|
| 379 |
-
if DEBUG_MODE: print(f"Exiting generate function...")
|
| 380 |
-
|
| 381 |
-
return clean_output
|
| 382 |
-
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
whisper_cs_fase_1.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from faster_whisper import WhisperModel
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from settings import MODEL_PATH_V2_FAST, MODEL_PATH_V1, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, BATCH_SIZE, TASK
|
| 6 |
+
from audio_utils import debug_print, get_settings, split_input_stereo_channels, format_audio, process_waveforms, post_process_transcripts, post_process_transcription, post_merge_consecutive_segments_from_text, cleanup_temp_files
|
| 7 |
+
|
| 8 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 9 |
+
|
| 10 |
+
ASR_MODEL_V2 = None
|
| 11 |
+
ASR_MODEL_V1 = None
|
| 12 |
+
|
| 13 |
+
def get_asr_model_v2(DEVICE, COMPUTE_TYPE):
|
| 14 |
+
global ASR_MODEL_V2
|
| 15 |
+
if ASR_MODEL_V2 is None:
|
| 16 |
+
debug_print("[MODEL LOADING] Loading ASR v2_fast model...")
|
| 17 |
+
ASR_MODEL_V2 = WhisperModel(
|
| 18 |
+
MODEL_PATH_V2_FAST,
|
| 19 |
+
device=DEVICE,
|
| 20 |
+
compute_type=COMPUTE_TYPE
|
| 21 |
+
)
|
| 22 |
+
debug_print("[MODEL LOADING]v2_fast model loaded")
|
| 23 |
+
return ASR_MODEL_V2
|
| 24 |
+
|
| 25 |
+
def get_asr_model_v1(DEVICE):
|
| 26 |
+
global ASR_MODEL_V1
|
| 27 |
+
if ASR_MODEL_V1 is None:
|
| 28 |
+
debug_print("[MODEL LOADING]Loading ASR v1 pipeline model...")
|
| 29 |
+
ASR_MODEL_V1 = pipeline(
|
| 30 |
+
task="automatic-speech-recognition",
|
| 31 |
+
model=MODEL_PATH_V1,
|
| 32 |
+
chunk_length_s=30,
|
| 33 |
+
device=0 if DEVICE == "cuda" else -1,
|
| 34 |
+
token=hf_token
|
| 35 |
+
)
|
| 36 |
+
debug_print("[MODEL LOADING]ASR v1 model loaded")
|
| 37 |
+
return ASR_MODEL_V1
|
| 38 |
+
|
| 39 |
+
def transcribe_asr(audio, model):
|
| 40 |
+
text = model(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": TASK}, return_timestamps=True)["text"]
|
| 41 |
+
return text
|
| 42 |
+
|
| 43 |
+
def transcribe_faster_asr(left_waveform, right_waveform, model):
|
| 44 |
+
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
| 45 |
+
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
| 46 |
+
return list(left_result), list(right_result)
|
| 47 |
+
|
| 48 |
+
def generate_fase_1(audio_path, model_version, civil_channel):
|
| 49 |
+
DEVICE, COMPUTE_TYPE = get_settings()
|
| 50 |
+
|
| 51 |
+
debug_print(f"[Fase1] Starting inference with model version: {model_version}")
|
| 52 |
+
|
| 53 |
+
if model_version == "v2_fast":
|
| 54 |
+
asr_model = get_asr_model_v2(DEVICE, COMPUTE_TYPE)
|
| 55 |
+
actual_compute_type = asr_model.model.compute_type
|
| 56 |
+
debug_print(f"[SETTINGS] Device: {DEVICE}, Compute type: {actual_compute_type}")
|
| 57 |
+
|
| 58 |
+
split_input_stereo_channels(audio_path)
|
| 59 |
+
left_waveform, right_waveform = process_waveforms(DEVICE, actual_compute_type)
|
| 60 |
+
|
| 61 |
+
debug_print(f"[SETTINGS] Civil channel: {civil_channel}")
|
| 62 |
+
left_result, right_result = transcribe_faster_asr(left_waveform, right_waveform, asr_model)
|
| 63 |
+
|
| 64 |
+
text, _ = post_process_transcripts(left_result, right_result, civil_channel)
|
| 65 |
+
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
|
| 66 |
+
else:
|
| 67 |
+
actual_compute_type = "float32" # HF pipeline safe default
|
| 68 |
+
debug_print(f"[SETTINGS] Device: {DEVICE}, Compute type: {actual_compute_type}")
|
| 69 |
+
|
| 70 |
+
asr_model = get_asr_model_v1(DEVICE)
|
| 71 |
+
audio = format_audio(audio_path, actual_compute_type, DEVICE)
|
| 72 |
+
result = transcribe_asr(audio, asr_model)
|
| 73 |
+
text = post_process_transcription(result)
|
| 74 |
+
|
| 75 |
+
return text
|
whisper_cs_fase_2.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from faster_whisper import WhisperModel
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import os
|
| 4 |
+
from settings import MODEL_PATH_AGE_GENDER, MODEL_PATH_METEO, MODEL_PATH_V2_FAST, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH
|
| 5 |
+
from audio_utils import debug_print, get_settings, split_input_stereo_channels, process_waveforms, post_process_transcripts, post_merge_consecutive_segments_from_text, cleanup_temp_files
|
| 6 |
+
from shout_detector import shout
|
| 7 |
+
from silence_detector import silence
|
| 8 |
+
from meteo_detector import classify_meteo_event
|
| 9 |
+
from age_gender_detector import age_gender, WavLMWrapper
|
| 10 |
+
|
| 11 |
+
hf_token = os.getenv("HF_AUTH_TOKEN")
|
| 12 |
+
|
| 13 |
+
ASR_MODEL = None
|
| 14 |
+
AGE_GENDER_MODEL = None
|
| 15 |
+
METEO_MODEL = None
|
| 16 |
+
|
| 17 |
+
def get_asr_model(DEVICE, COMPUTE_TYPE):
|
| 18 |
+
global ASR_MODEL
|
| 19 |
+
if ASR_MODEL is None:
|
| 20 |
+
debug_print("[MODEL LOADING]Loading ASR model...")
|
| 21 |
+
ASR_MODEL = WhisperModel(
|
| 22 |
+
MODEL_PATH_V2_FAST,
|
| 23 |
+
device=DEVICE,
|
| 24 |
+
compute_type=COMPUTE_TYPE
|
| 25 |
+
)
|
| 26 |
+
debug_print("[MODEL LOADING]ASR model loaded")
|
| 27 |
+
return ASR_MODEL
|
| 28 |
+
|
| 29 |
+
def get_age_gender_model(DEVICE):
|
| 30 |
+
global AGE_GENDER_MODEL
|
| 31 |
+
if AGE_GENDER_MODEL is None:
|
| 32 |
+
debug_print("[MODEL LOADING]Loading Age/Gender model...")
|
| 33 |
+
AGE_GENDER_MODEL = WavLMWrapper.from_pretrained(MODEL_PATH_AGE_GENDER).to(DEVICE)
|
| 34 |
+
AGE_GENDER_MODEL.eval()
|
| 35 |
+
debug_print("[MODEL LOADING]Age/Gender model loaded")
|
| 36 |
+
return AGE_GENDER_MODEL
|
| 37 |
+
|
| 38 |
+
def get_meteo_model(DEVICE):
|
| 39 |
+
global METEO_MODEL
|
| 40 |
+
if METEO_MODEL is None:
|
| 41 |
+
debug_print("[MODEL LOADING]Loading Meteo model...")
|
| 42 |
+
METEO_MODEL = pipeline(
|
| 43 |
+
task="text-classification",
|
| 44 |
+
model=MODEL_PATH_METEO,
|
| 45 |
+
tokenizer=MODEL_PATH_METEO,
|
| 46 |
+
top_k=None,
|
| 47 |
+
device=0 if DEVICE == "cuda" else -1,
|
| 48 |
+
token=hf_token
|
| 49 |
+
)
|
| 50 |
+
debug_print("[MODEL LOADING]Meteo model loaded")
|
| 51 |
+
return METEO_MODEL
|
| 52 |
+
|
| 53 |
+
def transcribe_faster_asr(left_waveform, right_waveform, model):
|
| 54 |
+
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
| 55 |
+
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
| 56 |
+
return list(left_result), list(right_result)
|
| 57 |
+
|
| 58 |
+
def generate_fase_2(audio_path, model_version, civil_channel):
|
| 59 |
+
|
| 60 |
+
DEVICE, COMPUTE_TYPE = get_settings()
|
| 61 |
+
|
| 62 |
+
asr_model = get_asr_model(DEVICE, COMPUTE_TYPE)
|
| 63 |
+
age_gender_model = get_age_gender_model(DEVICE)
|
| 64 |
+
meteo_model = get_meteo_model(DEVICE)
|
| 65 |
+
|
| 66 |
+
actual_compute_type = asr_model.model.compute_type
|
| 67 |
+
debug_print(f"[SETTINGS] Device: {DEVICE}, Compute type: {actual_compute_type}")
|
| 68 |
+
|
| 69 |
+
split_input_stereo_channels(audio_path)
|
| 70 |
+
left_waveform, right_waveform = process_waveforms(DEVICE, actual_compute_type)
|
| 71 |
+
|
| 72 |
+
debug_print(f"[SETTINGS] Civil channel: {civil_channel}")
|
| 73 |
+
left_result, right_result = transcribe_faster_asr(left_waveform, right_waveform, asr_model)
|
| 74 |
+
|
| 75 |
+
silence_event = silence(audio_path)
|
| 76 |
+
civil_waveform = left_waveform if civil_channel == "Left" else right_waveform
|
| 77 |
+
civil_path = LEFT_CHANNEL_TEMP_PATH if civil_channel == "Left" else RIGHT_CHANNEL_TEMP_PATH
|
| 78 |
+
shout_event = shout(civil_path)
|
| 79 |
+
age, sex, age_group = age_gender(civil_waveform, age_gender_model, DEVICE)
|
| 80 |
+
age = f"{age_group} (aprox. {age} años)"
|
| 81 |
+
|
| 82 |
+
clean_output_asr, clean_output_meteo = post_process_transcripts(left_result, right_result, civil_channel)
|
| 83 |
+
text = '\n' + clean_output_asr
|
| 84 |
+
|
| 85 |
+
meteo_event = classify_meteo_event(clean_output_meteo, meteo_model, threshold=0.0)
|
| 86 |
+
|
| 87 |
+
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
|
| 88 |
+
|
| 89 |
+
return text, sex, age, silence_event, shout_event, meteo_event
|