Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| from torchaudio.transforms import Resample | |
| from transformers import AutoFeatureExtractor, AutoModelForAudioXVector | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| STYLE = """ | |
| <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous"> | |
| """ | |
| OUTPUT_OK = ( | |
| STYLE | |
| + """ | |
| <div class="container"> | |
| <div class="row"><h1 style="text-align: center">The speakers are</h1></div> | |
| <div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div> | |
| <div class="row"><h1 style="text-align: center">similar</h1></div> | |
| <div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div> | |
| <div class="row"><small style="text-align: center">(You must get at least 80% to be considered the same person)</small><div class="row"> | |
| </div> | |
| """ | |
| ) | |
| OUTPUT_FAIL = ( | |
| STYLE | |
| + """ | |
| <div class="container"> | |
| <div class="row"><h1 style="text-align: center">The speakers are</h1></div> | |
| <div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div> | |
| <div class="row"><h1 style="text-align: center">similar</h1></div> | |
| <div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div> | |
| <div class="row"><small style="text-align: center">(You must get at least 80% to be considered the same person)</small><div class="row"> | |
| </div> | |
| """ | |
| ) | |
| THRESHOLD = 0.80 | |
| model_name = "microsoft/wavlm-base-plus-sv" | |
| feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
| model = AutoModelForAudioXVector.from_pretrained(model_name).to(device) | |
| cosine_sim = torch.nn.CosineSimilarity(dim=-1) | |
| def preprocess_audio(file_path, target_sr=16000): | |
| wav, sr = torchaudio.load(file_path) | |
| if sr != target_sr: | |
| wav = Resample(orig_freq=sr, new_freq=target_sr)(wav) | |
| return wav | |
| def similarity_fn(path1, path2): | |
| if not (path1 and path2): | |
| return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>' | |
| wav1 = preprocess_audio(path1) | |
| wav2 = preprocess_audio(path2) | |
| input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device) | |
| input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device) | |
| with torch.no_grad(): | |
| emb1 = model(input1).embeddings | |
| emb2 = model(input2).embeddings | |
| emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu() | |
| emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu() | |
| similarity = cosine_sim(emb1, emb2).numpy()[0] | |
| if similarity >= THRESHOLD: | |
| output = OUTPUT_OK.format(similarity * 100) | |
| else: | |
| output = OUTPUT_FAIL.format(similarity * 100) | |
| return output | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Voice Authentication with WavLM + X-Vectors") | |
| gr.Markdown( | |
| "This demo compares two speech samples to determine if they are from the same speaker. " | |
| "Try it with your own voice!" | |
| ) | |
| with gr.Row(): | |
| input1 = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Speaker #1") | |
| input2 = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Speaker #2") | |
| output = gr.HTML(label="Result") | |
| btn = gr.Button("Compare Speakers") | |
| btn.click(similarity_fn, inputs=[input1, input2], outputs=output) | |
| gr.Examples( | |
| examples=[ | |
| ["samples/denzel_washington.mp3", "samples/denzel_washington.mp3"], | |
| ["samples/heath_ledger_2.mp3", "samples/heath_ledger_3.mp3"], | |
| ["samples/heath_ledger_3.mp3", "samples/denzel_washington.mp3"], | |
| ["samples/denzel_washington.mp3", "samples/heath_ledger_2.mp3"], | |
| ], | |
| inputs=[input1, input2], | |
| ) | |
| gr.Markdown( | |
| "<p style='text-align: center'>" | |
| "<a href='https://huggingface.co/microsoft/wavlm-base-plus-sv' target='_blank'>ποΈ Learn more about WavLM</a> | " | |
| "<a href='https://arxiv.org/abs/2110.13900' target='_blank'>π WavLM paper</a> | " | |
| "<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>π X-Vector paper</a>" | |
| "</p>" | |
| ) | |
| demo.launch() | |