Spaces:
Configuration error
Configuration error
| // llama.cpp gRPC C++ backend server | |
| // | |
| // Ettore Di Giacinto <mudler@localai.io> and llama.cpp authors | |
| // | |
| // This is a gRPC server for llama.cpp compatible with the LocalAI proto | |
| // Note: this is a re-adaptation of the original llama.cpp example/server.cpp for HTTP (https://github.com/ggerganov/llama.cpp/tree/master/examples/server), | |
| // but modified to work with gRPC | |
| // | |
| // include std::regex | |
| using grpc::Server; | |
| using grpc::ServerBuilder; | |
| using grpc::ServerContext; | |
| using grpc::Status; | |
| using backend::HealthMessage; | |
| ///// LLAMA.CPP server code below | |
| using json = nlohmann::json; | |
| struct server_params | |
| { | |
| std::string hostname = "127.0.0.1"; | |
| std::vector<std::string> api_keys; | |
| std::string public_path = "examples/server/public"; | |
| std::string chat_template = ""; | |
| int32_t port = 8080; | |
| int32_t read_timeout = 600; | |
| int32_t write_timeout = 600; | |
| bool slots_endpoint = true; | |
| bool metrics_endpoint = false; | |
| }; | |
| bool server_verbose = false; | |
| bool server_log_json = true; | |
| static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b) | |
| { | |
| size_t i; | |
| for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) | |
| { | |
| } | |
| return i; | |
| } | |
| enum stop_type | |
| { | |
| STOP_FULL, | |
| STOP_PARTIAL, | |
| }; | |
| static bool ends_with(const std::string &str, const std::string &suffix) | |
| { | |
| return str.size() >= suffix.size() && | |
| 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); | |
| } | |
| static size_t find_partial_stop_string(const std::string &stop, | |
| const std::string &text) | |
| { | |
| if (!text.empty() && !stop.empty()) | |
| { | |
| const char text_last_char = text.back(); | |
| for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) | |
| { | |
| if (stop[char_index] == text_last_char) | |
| { | |
| const std::string current_partial = stop.substr(0, char_index + 1); | |
| if (ends_with(text, current_partial)) | |
| { | |
| return text.size() - char_index - 1; | |
| } | |
| } | |
| } | |
| } | |
| return std::string::npos; | |
| } | |
| // TODO: reuse llama_detokenize | |
| template <class Iter> | |
| static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end) | |
| { | |
| std::string ret; | |
| for (; begin != end; ++begin) | |
| { | |
| ret += common_token_to_piece(ctx, *begin); | |
| } | |
| return ret; | |
| } | |
| // format incomplete utf-8 multibyte character for output | |
| static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) | |
| { | |
| std::string out = token == -1 ? "" : common_token_to_piece(ctx, token); | |
| // if the size is 1 and first bit is 1, meaning it's a partial character | |
| // (size > 1 meaning it's already a known token) | |
| if (out.size() == 1 && (out[0] & 0x80) == 0x80) | |
| { | |
| std::stringstream ss; | |
| ss << std::hex << (out[0] & 0xff); | |
| std::string res(ss.str()); | |
| out = "byte: \\x" + res; | |
| } | |
| return out; | |
| } | |
| // convert a vector of completion_token_output to json | |
| static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs) | |
| { | |
| json out = json::array(); | |
| for (const auto &prob : probs) | |
| { | |
| json probs_for_token = json::array(); | |
| for (const auto &p : prob.probs) | |
| { | |
| std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); | |
| probs_for_token.push_back(json | |
| { | |
| {"tok_str", tok_str}, | |
| {"prob", p.prob}, | |
| }); | |
| } | |
| std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); | |
| out.push_back(json{ | |
| {"content", tok_str}, | |
| {"probs", probs_for_token}, | |
| }); | |
| } | |
| return out; | |
| } | |
| struct llama_client_slot | |
| { | |
| int id; | |
| int task_id = -1; | |
| struct slot_params params; | |
| slot_state state = IDLE; | |
| slot_command command = NONE; | |
| // used to determine the slot that has been used the longest | |
| int64_t t_last_used = -1; | |
| // generation props | |
| int32_t n_ctx = 0; // context size per slot | |
| int32_t n_past = 0; | |
| int32_t n_decoded = 0; | |
| int32_t n_remaining = -1; | |
| int32_t i_batch = -1; | |
| int32_t n_predict = -1; | |
| int32_t num_prompt_tokens = 0; | |
| int32_t num_prompt_tokens_processed = 0; | |
| json prompt; | |
| std::string generated_text; | |
| llama_token sampled; | |
| std::vector<llama_token> cache_tokens; | |
| std::vector<completion_token_output> generated_token_probs; | |
| bool infill = false; | |
| bool embedding = false; | |
| bool has_next_token = true; | |
| bool truncated = false; | |
| bool stopped_eos = false; | |
| bool stopped_word = false; | |
| bool stopped_limit = false; | |
| bool oaicompat = false; | |
| std::string oaicompat_model; | |
| std::string stopping_word; | |
| // sampling | |
| struct common_sampler_params sparams; | |
| common_sampler *ctx_sampling = nullptr; | |
| int32_t ga_i = 0; // group-attention state | |
| int32_t ga_n = 1; // group-attention factor | |
| int32_t ga_w = 512; // group-attention width | |
| int32_t n_past_se = 0; // self-extend | |
| // multimodal | |
| std::vector<slot_image> images; | |
| // stats | |
| size_t sent_count = 0; | |
| size_t sent_token_probs_index = 0; | |
| int64_t t_start_process_prompt; | |
| int64_t t_start_genereration; | |
| double t_prompt_processing; // ms | |
| double t_token_generation; // ms | |
| // multitasks | |
| int multitask_id = -1; | |
| void reset() { | |
| num_prompt_tokens = 0; | |
| generated_text = ""; | |
| truncated = false; | |
| stopped_eos = false; | |
| stopped_word = false; | |
| stopped_limit = false; | |
| stopping_word = ""; | |
| n_past = 0; | |
| sent_count = 0; | |
| sent_token_probs_index = 0; | |
| infill = false; | |
| ga_i = 0; | |
| n_past_se = 0; | |
| generated_token_probs.clear(); | |
| for (slot_image & img : images) | |
| { | |
| free(img.image_embedding); | |
| if (img.img_data) { | |
| clip_image_u8_free(img.img_data); | |
| } | |
| img.prefix_prompt = ""; | |
| } | |
| images.clear(); | |
| } | |
| bool has_budget(common_params &global_params) { | |
| if (params.n_predict == -1 && global_params.n_predict == -1) | |
| { | |
| return true; // limitless | |
| } | |
| n_remaining = -1; | |
| if (params.n_predict != -1) | |
| { | |
| n_remaining = params.n_predict - n_decoded; | |
| } | |
| else if (global_params.n_predict != -1) | |
| { | |
| n_remaining = global_params.n_predict - n_decoded; | |
| } | |
| return n_remaining > 0; // no budget | |
| } | |
| bool available() const { | |
| return state == IDLE && command == NONE; | |
| } | |
| bool is_processing() const { | |
| return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING; | |
| } | |
| void add_token_string(const completion_token_output &token) { | |
| if (command == RELEASE) | |
| { | |
| return; | |
| } | |
| cache_tokens.push_back(token.tok); | |
| generated_token_probs.push_back(token); | |
| } | |
| void release() { | |
| if (state == PROCESSING) | |
| { | |
| t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3; | |
| command = RELEASE; | |
| } | |
| } | |
| json get_formated_timings() { | |
| return json | |
| { | |
| {"prompt_n", num_prompt_tokens_processed}, | |
| {"prompt_ms", t_prompt_processing}, | |
| {"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed}, | |
| {"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed}, | |
| {"predicted_n", n_decoded}, | |
| {"predicted_ms", t_token_generation}, | |
| {"predicted_per_token_ms", t_token_generation / n_decoded}, | |
| {"predicted_per_second", 1e3 / t_token_generation * n_decoded}, | |
| }; | |
| } | |
| void print_timings() const { | |
| char buffer[512]; | |
| double t_token = t_prompt_processing / num_prompt_tokens_processed; | |
| double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed; | |
| sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)", | |
| t_prompt_processing, num_prompt_tokens_processed, | |
| t_token, n_tokens_second); | |
| LOG_INFO(buffer, { | |
| {"slot_id", id}, | |
| {"task_id", task_id}, | |
| {"t_prompt_processing", t_prompt_processing}, | |
| {"num_prompt_tokens_processed", num_prompt_tokens_processed}, | |
| {"t_token", t_token}, | |
| {"n_tokens_second", n_tokens_second}, | |
| }); | |
| t_token = t_token_generation / n_decoded; | |
| n_tokens_second = 1e3 / t_token_generation * n_decoded; | |
| sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)", | |
| t_token_generation, n_decoded, | |
| t_token, n_tokens_second); | |
| LOG_INFO(buffer, { | |
| {"slot_id", id}, | |
| {"task_id", task_id}, | |
| {"t_token_generation", t_token_generation}, | |
| {"n_decoded", n_decoded}, | |
| {"t_token", t_token}, | |
| {"n_tokens_second", n_tokens_second}, | |
| }); | |
| sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation); | |
| LOG_INFO(buffer, { | |
| {"slot_id", id}, | |
| {"task_id", task_id}, | |
| {"t_prompt_processing", t_prompt_processing}, | |
| {"t_token_generation", t_token_generation}, | |
| {"t_total", t_prompt_processing + t_token_generation}, | |
| }); | |
| } | |
| }; | |
| struct llama_metrics { | |
| uint64_t n_prompt_tokens_processed_total = 0; | |
| uint64_t n_tokens_predicted_total = 0; | |
| uint64_t n_prompt_tokens_processed = 0; | |
| uint64_t t_prompt_processing = 0; | |
| uint64_t n_tokens_predicted = 0; | |
| uint64_t t_tokens_generation = 0; | |
| void on_prompt_eval(const llama_client_slot &slot) { | |
| n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed; | |
| n_prompt_tokens_processed += slot.num_prompt_tokens_processed; | |
| t_prompt_processing += slot.t_prompt_processing; | |
| } | |
| void on_prediction(const llama_client_slot &slot) { | |
| n_tokens_predicted_total += slot.n_decoded; | |
| n_tokens_predicted += slot.n_decoded; | |
| t_tokens_generation += slot.t_token_generation; | |
| } | |
| void reset_bucket() { | |
| n_prompt_tokens_processed = 0; | |
| t_prompt_processing = 0; | |
| n_tokens_predicted = 0; | |
| t_tokens_generation = 0; | |
| } | |
| }; | |
| struct llava_embd_batch { | |
| std::vector<llama_pos> pos; | |
| std::vector<int32_t> n_seq_id; | |
| std::vector<llama_seq_id> seq_id_0; | |
| std::vector<llama_seq_id *> seq_ids; | |
| std::vector<int8_t> logits; | |
| llama_batch batch; | |
| llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { | |
| pos .resize(n_tokens); | |
| n_seq_id.resize(n_tokens); | |
| seq_ids .resize(n_tokens + 1); | |
| logits .resize(n_tokens); | |
| seq_id_0.resize(1); | |
| seq_id_0[0] = seq_id; | |
| seq_ids [n_tokens] = nullptr; | |
| batch = { | |
| /*n_tokens =*/ n_tokens, | |
| /*tokens =*/ nullptr, | |
| /*embd =*/ embd, | |
| /*pos =*/ pos.data(), | |
| /*n_seq_id =*/ n_seq_id.data(), | |
| /*seq_id =*/ seq_ids.data(), | |
| /*logits =*/ logits.data(), | |
| }; | |
| for (int i = 0; i < n_tokens; i++) { | |
| batch.pos [i] = pos_0 + i; | |
| batch.n_seq_id[i] = 1; | |
| batch.seq_id [i] = seq_id_0.data(); | |
| batch.logits [i] = false; | |
| } | |
| } | |
| }; | |
| struct llama_server_context | |
| { | |
| llama_model *model = nullptr; | |
| llama_context *ctx = nullptr; | |
| clip_ctx *clp_ctx = nullptr; | |
| common_params params; | |
| llama_batch batch; | |
| bool multimodal = false; | |
| bool clean_kv_cache = true; | |
| bool all_slots_are_idle = false; | |
| bool add_bos_token = true; | |
| int32_t n_ctx; // total context for all clients / slots | |
| // system prompt | |
| bool system_need_update = false; | |
| std::string system_prompt; | |
| std::vector<llama_token> system_tokens; | |
| std::string name_user; // this should be the antiprompt | |
| std::string name_assistant; | |
| // slots / clients | |
| std::vector<llama_client_slot> slots; | |
| json default_generation_settings_for_props; | |
| llama_server_queue queue_tasks; | |
| llama_server_response queue_results; | |
| llama_metrics metrics; | |
| ~llama_server_context() | |
| { | |
| if (ctx) | |
| { | |
| llama_free(ctx); | |
| ctx = nullptr; | |
| } | |
| if (model) | |
| { | |
| llama_free_model(model); | |
| model = nullptr; | |
| } | |
| } | |
| bool load_model(const common_params ¶ms_) | |
| { | |
| params = params_; | |
| if (!params.mmproj.empty()) { | |
| multimodal = true; | |
| LOG_INFO("Multi Modal Mode Enabled", {}); | |
| clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1); | |
| if(clp_ctx == nullptr) { | |
| LOG_ERR("unable to load clip model: %s", params.mmproj.c_str()); | |
| return false; | |
| } | |
| if (params.n_ctx < 2048) { // request larger context for the image embedding | |
| params.n_ctx = 2048; | |
| } | |
| } | |
| common_init_result common_init = common_init_from_params(params); | |
| model = common_init.model; | |
| ctx = common_init.context; | |
| if (model == nullptr) | |
| { | |
| LOG_ERR("unable to load model: %s", params.model.c_str()); | |
| return false; | |
| } | |
| if (multimodal) { | |
| const int n_embd_clip = clip_n_mmproj_embd(clp_ctx); | |
| const int n_embd_llm = llama_n_embd(model); | |
| if (n_embd_clip != n_embd_llm) { | |
| LOG("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm); | |
| llama_free(ctx); | |
| llama_free_model(model); | |
| return false; | |
| } | |
| } | |
| n_ctx = llama_n_ctx(ctx); | |
| add_bos_token = llama_add_bos_token(model); | |
| return true; | |
| } | |
| void validate_model_chat_template(server_params & sparams) { | |
| llama_chat_message chat[] = {{"user", "test"}}; | |
| std::vector<char> buf(1); | |
| int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size()); | |
| if (res < 0) { | |
| LOG_ERR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", __func__); | |
| sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template | |
| } | |
| } | |
| llama_client_slot* get_active_slot() { | |
| for (llama_client_slot& slot : slots) { | |
| // Check if the slot is currently processing | |
| if (slot.is_processing()) { | |
| return &slot; // Return the active slot | |
| } | |
| } | |
| return nullptr; // No active slot found | |
| } | |
| void initialize() { | |
| // create slots | |
| all_slots_are_idle = true; | |
| const int32_t n_ctx_slot = n_ctx / params.n_parallel; | |
| LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}}); | |
| for (int i = 0; i < params.n_parallel; i++) | |
| { | |
| llama_client_slot slot; | |
| slot.id = i; | |
| slot.n_ctx = n_ctx_slot; | |
| slot.n_predict = params.n_predict; | |
| LOG_INFO("new slot", { | |
| {"slot_id", slot.id}, | |
| {"n_ctx_slot", slot.n_ctx} | |
| }); | |
| const int ga_n = params.grp_attn_n; | |
| const int ga_w = params.grp_attn_w; | |
| if (ga_n != 1) { | |
| GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT | |
| GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT | |
| //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT | |
| //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT | |
| LOG_INFO("slot self-extend", { | |
| {"slot_id", slot.id}, | |
| {"ga_n", ga_n}, | |
| {"ga_w", ga_w} | |
| }); | |
| } | |
| slot.ga_i = 0; | |
| slot.ga_n = ga_n; | |
| slot.ga_w = ga_w; | |
| slot.reset(); | |
| slots.push_back(slot); | |
| } | |
| default_generation_settings_for_props = get_formated_generation(slots.front()); | |
| default_generation_settings_for_props["seed"] = -1; | |
| batch = llama_batch_init(n_ctx, 0, params.n_parallel); | |
| } | |
| std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const | |
| { | |
| // TODO: currently, we tokenize using special tokens by default | |
| // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216) | |
| // but it's better compared to completely ignoring ChatML and other chat templates | |
| const bool TMP_FORCE_SPECIAL = true; | |
| // If `add_bos` is true, we only add BOS, when json_prompt is a string, | |
| // or the first element of the json_prompt array is a string. | |
| std::vector<llama_token> prompt_tokens; | |
| if (json_prompt.is_array()) | |
| { | |
| bool first = true; | |
| for (const auto& p : json_prompt) | |
| { | |
| if (p.is_string()) | |
| { | |
| auto s = p.template get<std::string>(); | |
| std::vector<llama_token> p; | |
| if (first) | |
| { | |
| p = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); | |
| first = false; | |
| } | |
| else | |
| { | |
| p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL); | |
| } | |
| prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); | |
| } | |
| else | |
| { | |
| if (first) | |
| { | |
| first = false; | |
| } | |
| prompt_tokens.push_back(p.template get<llama_token>()); | |
| } | |
| } | |
| } | |
| else | |
| { | |
| auto s = json_prompt.template get<std::string>(); | |
| prompt_tokens = common_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); | |
| } | |
| return prompt_tokens; | |
| } | |
| llama_client_slot* get_slot(int id) { | |
| int64_t t_last = ggml_time_us(); | |
| llama_client_slot *last_used = nullptr; | |
| for (llama_client_slot & slot : slots) | |
| { | |
| if (slot.id == id && slot.available()) | |
| { | |
| return &slot; | |
| } | |
| if (slot.available() && slot.t_last_used < t_last) | |
| { | |
| last_used = &slot; | |
| t_last = slot.t_last_used; | |
| } | |
| } | |
| return last_used; | |
| } | |
| bool launch_slot_with_data(llama_client_slot* &slot, json data) { | |
| slot_params default_params; | |
| common_sampler_params default_sparams; | |
| slot->params.stream = json_value(data, "stream", false); | |
| slot->params.cache_prompt = json_value(data, "cache_prompt", false); | |
| slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); | |
| slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); | |
| slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); | |
| slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p); | |
| slot->sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p); | |
| slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); | |
| slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range); | |
| slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent); | |
| slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); | |
| slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); | |
| slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); | |
| slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); | |
| slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); | |
| slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); | |
| slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); | |
| slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); | |
| slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); | |
| slot->sparams.seed = json_value(data, "seed", default_sparams.seed); | |
| slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); | |
| slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); | |
| slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); | |
| if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) { | |
| // Might be better to reject the request with a 400 ? | |
| LOG_WARNING("Max tokens to predict exceeds server configuration", { | |
| {"params.n_predict", slot->params.n_predict}, | |
| {"slot.n_predict", slot->n_predict}, | |
| }); | |
| slot->params.n_predict = slot->n_predict; | |
| } | |
| // infill | |
| if (data.count("input_prefix") != 0) | |
| { | |
| slot->params.input_prefix = data["input_prefix"]; | |
| } | |
| else | |
| { | |
| slot->params.input_prefix = ""; | |
| } | |
| if (data.count("input_suffix") != 0) | |
| { | |
| slot->params.input_suffix = data["input_suffix"]; | |
| } | |
| else | |
| { | |
| slot->params.input_suffix = ""; | |
| } | |
| if (data.count("prompt") != 0) | |
| { | |
| slot->prompt = data["prompt"]; | |
| } | |
| else | |
| { | |
| slot->prompt = ""; | |
| } | |
| if (json_value(data, "ignore_eos", false)) { | |
| slot->sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY}); | |
| } | |
| /* | |
| slot->sparams.penalty_prompt_tokens.clear(); | |
| slot->sparams.use_penalty_prompt_tokens = false; | |
| const auto &penalty_prompt = data.find("penalty_prompt"); | |
| if (penalty_prompt != data.end()) | |
| { | |
| if (penalty_prompt->is_string()) | |
| { | |
| const auto penalty_prompt_string = penalty_prompt->get<std::string>(); | |
| auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false); | |
| slot->sparams.penalty_prompt_tokens.swap(penalty_tokens); | |
| if (slot->params.n_predict > 0) | |
| { | |
| slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict); | |
| } | |
| slot->sparams.use_penalty_prompt_tokens = true; | |
| } | |
| else if (penalty_prompt->is_array()) | |
| { | |
| const auto n_tokens = penalty_prompt->size(); | |
| slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict)); | |
| const int n_vocab = llama_n_vocab(model); | |
| for (const auto &penalty_token : *penalty_prompt) | |
| { | |
| if (penalty_token.is_number_integer()) | |
| { | |
| const auto tok = penalty_token.get<llama_token>(); | |
| if (tok >= 0 && tok < n_vocab) | |
| { | |
| slot->sparams.penalty_prompt_tokens.push_back(tok); | |
| } | |
| } | |
| } | |
| slot->sparams.use_penalty_prompt_tokens = true; | |
| } | |
| } | |
| */ | |
| slot->sparams.logit_bias.clear(); | |
| const auto &logit_bias = data.find("logit_bias"); | |
| if (logit_bias != data.end() && logit_bias->is_array()) | |
| { | |
| const int n_vocab = llama_n_vocab(model); | |
| for (const auto &el : *logit_bias) | |
| { | |
| if (el.is_array() && el.size() == 2) | |
| { | |
| float bias; | |
| if (el[1].is_number()) | |
| { | |
| bias = el[1].get<float>(); | |
| } | |
| else if (el[1].is_boolean() && !el[1].get<bool>()) | |
| { | |
| bias = -INFINITY; | |
| } | |
| else | |
| { | |
| continue; | |
| } | |
| if (el[0].is_number_integer()) | |
| { | |
| llama_token tok = el[0].get<llama_token>(); | |
| if (tok >= 0 && tok < n_vocab) | |
| { | |
| slot->sparams.logit_bias.push_back({tok, bias}); | |
| } | |
| } | |
| else if (el[0].is_string()) | |
| { | |
| auto toks = common_tokenize(model, el[0].get<std::string>(), false); | |
| for (auto tok : toks) | |
| { | |
| slot->sparams.logit_bias.push_back({tok, bias}); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| slot->params.antiprompt.clear(); | |
| const auto &stop = data.find("stop"); | |
| if (stop != data.end() && stop->is_array()) | |
| { | |
| for (const auto &word : *stop) | |
| { | |
| if (!word.empty()) | |
| { | |
| slot->params.antiprompt.push_back(word); | |
| } | |
| } | |
| } | |
| const auto & samplers = data.find("samplers"); | |
| if (samplers != data.end() && samplers->is_array()) { | |
| std::vector<std::string> sampler_names; | |
| for (const auto & name : *samplers) { | |
| if (name.is_string()) { | |
| sampler_names.emplace_back(name); | |
| } | |
| } | |
| slot->sparams.samplers = common_sampler_types_from_names(sampler_names, false); | |
| } | |
| else | |
| { | |
| slot->sparams.samplers = default_sparams.samplers; | |
| } | |
| if (multimodal) | |
| { | |
| const auto &images_data = data.find("image_data"); | |
| if (images_data != data.end() && images_data->is_array()) | |
| { | |
| for (const auto &img : *images_data) | |
| { | |
| const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>()); | |
| slot_image img_sl; | |
| img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size(); | |
| img_sl.img_data = clip_image_u8_init(); | |
| if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data)) | |
| { | |
| LOG_ERR("%s: failed to load image, slot_id: %d, img_sl_id: %d", | |
| __func__, | |
| slot->id, | |
| img_sl.id | |
| ); | |
| return false; | |
| } | |
| LOG_VERBOSE("image loaded", { | |
| {"slot_id", slot->id}, | |
| {"img_sl_id", img_sl.id} | |
| }); | |
| img_sl.request_encode_image = true; | |
| slot->images.push_back(img_sl); | |
| } | |
| // process prompt | |
| // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]} | |
| if (slot->images.size() > 0 && !slot->prompt.is_array()) | |
| { | |
| std::string prompt = slot->prompt.get<std::string>(); | |
| size_t pos = 0, begin_prefix = 0; | |
| std::string pattern = "[img-"; | |
| while ((pos = prompt.find(pattern, pos)) != std::string::npos) { | |
| size_t end_prefix = pos; | |
| pos += pattern.length(); | |
| size_t end_pos = prompt.find(']', pos); | |
| if (end_pos != std::string::npos) | |
| { | |
| std::string image_id = prompt.substr(pos, end_pos - pos); | |
| try | |
| { | |
| int img_id = std::stoi(image_id); | |
| bool found = false; | |
| for (slot_image &img : slot->images) | |
| { | |
| if (img.id == img_id) { | |
| found = true; | |
| img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix); | |
| begin_prefix = end_pos + 1; | |
| break; | |
| } | |
| } | |
| if (!found) { | |
| LOG("ERROR: Image with id: %i, not found.\n", img_id); | |
| slot->images.clear(); | |
| return false; | |
| } | |
| } catch (const std::invalid_argument& e) { | |
| LOG("Invalid image number id in prompt\n"); | |
| slot->images.clear(); | |
| return false; | |
| } | |
| } | |
| } | |
| slot->prompt = ""; | |
| slot->params.input_suffix = prompt.substr(begin_prefix); | |
| slot->params.cache_prompt = false; // multimodal doesn't support cache prompt | |
| } | |
| } | |
| } | |
| if (slot->ctx_sampling != nullptr) | |
| { | |
| common_sampler_free(slot->ctx_sampling); | |
| } | |
| slot->ctx_sampling = common_sampler_init(model, slot->sparams); | |
| //llama_set_rng_seed(ctx, slot->params.seed); | |
| slot->command = LOAD_PROMPT; | |
| all_slots_are_idle = false; | |
| LOG_INFO("slot is processing task", { | |
| {"slot_id", slot->id}, | |
| {"task_id", slot->task_id}, | |
| }); | |
| // LOG("sampling: \n%s\n", llama_sampling_print(slot->sparams).c_str()); | |
| return true; | |
| } | |
| void kv_cache_clear() { | |
| // clear the entire KV cache | |
| llama_kv_cache_clear(ctx); | |
| clean_kv_cache = false; | |
| } | |
| void update_system_prompt() { | |
| kv_cache_clear(); | |
| system_tokens.clear(); | |
| if (!system_prompt.empty()) { | |
| system_tokens = common_tokenize(ctx, system_prompt, add_bos_token); | |
| common_batch_clear(batch); | |
| for (int i = 0; i < (int)system_tokens.size(); ++i) | |
| { | |
| common_batch_add(batch, system_tokens[i], i, { 0 }, false); | |
| } | |
| for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) | |
| { | |
| const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i)); | |
| llama_batch batch_view = { | |
| n_tokens, | |
| batch.token + i, | |
| nullptr, | |
| batch.pos + i, | |
| batch.n_seq_id + i, | |
| batch.seq_id + i, | |
| batch.logits + i, | |
| }; | |
| if (llama_decode(ctx, batch_view) != 0) | |
| { | |
| LOG("%s: llama_decode() failed\n", __func__); | |
| return; | |
| } | |
| } | |
| // assign the system KV cache to all parallel sequences | |
| for (int32_t i = 1; i < params.n_parallel; ++i) | |
| { | |
| llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size()); | |
| } | |
| } | |
| LOG("system prompt updated\n"); | |
| system_need_update = false; | |
| } | |
| void notify_system_prompt_changed() { | |
| // release all slots | |
| for (llama_client_slot &slot : slots) | |
| { | |
| slot.release(); | |
| } | |
| system_need_update = true; | |
| } | |
| void process_system_prompt_data(const json &sys_props) { | |
| system_prompt = sys_props.value("prompt", ""); | |
| name_user = sys_props.value("anti_prompt", ""); | |
| name_assistant = sys_props.value("assistant_name", ""); | |
| notify_system_prompt_changed(); | |
| } | |
| static size_t find_stopping_strings(const std::string &text, const size_t last_token_size, | |
| const stop_type type, llama_client_slot &slot) | |
| { | |
| size_t stop_pos = std::string::npos; | |
| for (const std::string &word : slot.params.antiprompt) | |
| { | |
| size_t pos; | |
| if (type == STOP_FULL) | |
| { | |
| const size_t tmp = word.size() + last_token_size; | |
| const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; | |
| pos = text.find(word, from_pos); | |
| } | |
| else | |
| { | |
| pos = find_partial_stop_string(word, text); | |
| } | |
| if (pos != std::string::npos && | |
| (stop_pos == std::string::npos || pos < stop_pos)) | |
| { | |
| if (type == STOP_FULL) | |
| { | |
| slot.stopped_word = true; | |
| slot.stopping_word = word; | |
| slot.has_next_token = false; | |
| } | |
| stop_pos = pos; | |
| } | |
| } | |
| return stop_pos; | |
| } | |
| bool process_token(completion_token_output &result, llama_client_slot &slot) { | |
| // remember which tokens were sampled - used for repetition penalties during sampling | |
| const std::string token_str = common_token_to_piece(ctx, result.tok); | |
| slot.sampled = result.tok; | |
| // search stop word and delete it | |
| slot.generated_text += token_str; | |
| slot.has_next_token = true; | |
| /* | |
| if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) | |
| { | |
| // we can change penalty_prompt_tokens because it is always created from scratch each request | |
| slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok); | |
| } | |
| */ | |
| // check if there is incomplete UTF-8 character at the end | |
| bool incomplete = false; | |
| for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) | |
| { | |
| unsigned char c = slot.generated_text[slot.generated_text.size() - i]; | |
| if ((c & 0xC0) == 0x80) | |
| { | |
| // continuation byte: 10xxxxxx | |
| continue; | |
| } | |
| if ((c & 0xE0) == 0xC0) | |
| { | |
| // 2-byte character: 110xxxxx ... | |
| incomplete = i < 2; | |
| } | |
| else if ((c & 0xF0) == 0xE0) | |
| { | |
| // 3-byte character: 1110xxxx ... | |
| incomplete = i < 3; | |
| } | |
| else if ((c & 0xF8) == 0xF0) | |
| { | |
| // 4-byte character: 11110xxx ... | |
| incomplete = i < 4; | |
| } | |
| // else 1-byte character or invalid byte | |
| break; | |
| } | |
| if (!incomplete) | |
| { | |
| size_t pos = std::min(slot.sent_count, slot.generated_text.size()); | |
| const std::string str_test = slot.generated_text.substr(pos); | |
| bool is_stop_full = false; | |
| size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot); | |
| if (stop_pos != std::string::npos) | |
| { | |
| is_stop_full = true; | |
| slot.generated_text.erase( | |
| slot.generated_text.begin() + pos + stop_pos, | |
| slot.generated_text.end()); | |
| pos = std::min(slot.sent_count, slot.generated_text.size()); | |
| } | |
| else | |
| { | |
| is_stop_full = false; | |
| stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot); | |
| } | |
| // check if there is any token to predict | |
| if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) | |
| { | |
| // no send the stop word in the response | |
| result.text_to_send = slot.generated_text.substr(pos, std::string::npos); | |
| slot.sent_count += result.text_to_send.size(); | |
| // add the token to slot queue and cache | |
| } | |
| slot.add_token_string(result); | |
| if (slot.params.stream) | |
| { | |
| send_partial_response(slot, result); | |
| } | |
| } | |
| if (incomplete) | |
| { | |
| slot.has_next_token = true; | |
| } | |
| // check the limits | |
| if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) | |
| { | |
| slot.stopped_limit = true; | |
| slot.has_next_token = false; | |
| } | |
| if (result.tok == llama_token_eos(model)) | |
| { | |
| slot.stopped_eos = true; | |
| slot.has_next_token = false; | |
| LOG_VERBOSE("eos token found", {}); | |
| } | |
| LOG_VERBOSE("next token", { | |
| {"token", result.tok}, | |
| {"token_text", tokens_to_output_formatted_string(ctx, result.tok)}, | |
| {"has_next_token", slot.has_next_token}, | |
| {"n_remain", slot.n_remaining}, | |
| {"num_tokens_predicted", slot.n_decoded}, | |
| {"stopped_eos", slot.stopped_eos}, | |
| {"stopped_word", slot.stopped_word}, | |
| {"stopped_limit", slot.stopped_limit}, | |
| {"stopping_word", slot.stopping_word}, | |
| }); | |
| return slot.has_next_token; // continue | |
| } | |
| bool process_images(llama_client_slot &slot) const | |
| { | |
| for (slot_image &img : slot.images) | |
| { | |
| if (!img.request_encode_image) | |
| { | |
| continue; | |
| } | |
| if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) { | |
| LOG("Error processing the given image"); | |
| return false; | |
| } | |
| img.request_encode_image = false; | |
| } | |
| return slot.images.size() > 0; | |
| } | |
| void send_error(task_server& task, const std::string &error) | |
| { | |
| LOG("task %i - error: %s\n", task.id, error.c_str()); | |
| task_result res; | |
| res.id = task.id; | |
| res.multitask_id = task.multitask_id; | |
| res.stop = false; | |
| res.error = true; | |
| res.result_json = { { "content", error } }; | |
| queue_results.send(res); | |
| } | |
| json get_formated_generation(llama_client_slot &slot) | |
| { | |
| std::vector<std::string> samplers; | |
| samplers.reserve(slot.sparams.samplers.size()); | |
| for (const auto & sampler : slot.sparams.samplers) | |
| { | |
| samplers.emplace_back(common_sampler_type_to_str(sampler)); | |
| } | |
| return json { | |
| {"n_ctx", slot.n_ctx}, | |
| {"n_predict", slot.n_predict}, | |
| {"model", params.model_alias}, | |
| {"seed", slot.params.seed}, | |
| {"temperature", slot.sparams.temp}, | |
| {"dynatemp_range", slot.sparams.dynatemp_range}, | |
| {"dynatemp_exponent", slot.sparams.dynatemp_exponent}, | |
| {"top_k", slot.sparams.top_k}, | |
| {"top_p", slot.sparams.top_p}, | |
| {"min_p", slot.sparams.min_p}, | |
| {"typical_p", slot.sparams.typ_p}, | |
| {"repeat_last_n", slot.sparams.penalty_last_n}, | |
| {"repeat_penalty", slot.sparams.penalty_repeat}, | |
| {"presence_penalty", slot.sparams.penalty_present}, | |
| {"frequency_penalty", slot.sparams.penalty_freq}, | |
| {"mirostat", slot.sparams.mirostat}, | |
| {"mirostat_tau", slot.sparams.mirostat_tau}, | |
| {"mirostat_eta", slot.sparams.mirostat_eta}, | |
| {"penalize_nl", slot.sparams.penalize_nl}, | |
| {"stop", slot.params.antiprompt}, | |
| {"n_predict", slot.params.n_predict}, | |
| {"n_keep", params.n_keep}, | |
| {"ignore_eos", slot.sparams.ignore_eos}, | |
| {"stream", slot.params.stream}, | |
| // {"logit_bias", slot.sparams.logit_bias}, | |
| {"n_probs", slot.sparams.n_probs}, | |
| {"min_keep", slot.sparams.min_keep}, | |
| {"grammar", slot.sparams.grammar}, | |
| {"samplers", samplers} | |
| }; | |
| } | |
| void send_partial_response(llama_client_slot &slot, completion_token_output tkn) | |
| { | |
| task_result res; | |
| res.id = slot.task_id; | |
| res.multitask_id = slot.multitask_id; | |
| res.error = false; | |
| res.stop = false; | |
| res.result_json = json | |
| { | |
| {"content", tkn.text_to_send}, | |
| {"stop", false}, | |
| {"slot_id", slot.id}, | |
| {"multimodal", multimodal} | |
| }; | |
| if (slot.sparams.n_probs > 0) | |
| { | |
| std::vector<completion_token_output> probs_output = {}; | |
| const std::vector<llama_token> to_send_toks = common_tokenize(ctx, tkn.text_to_send, false); | |
| size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size()); | |
| size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size()); | |
| if (probs_pos < probs_stop_pos) | |
| { | |
| probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos); | |
| } | |
| slot.sent_token_probs_index = probs_stop_pos; | |
| res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); | |
| } | |
| if (slot.oaicompat) | |
| { | |
| res.result_json["oaicompat_token_ctr"] = slot.n_decoded; | |
| res.result_json["model"] = slot.oaicompat_model; | |
| } | |
| queue_results.send(res); | |
| } | |
| void send_final_response(llama_client_slot &slot) | |
| { | |
| task_result res; | |
| res.id = slot.task_id; | |
| res.multitask_id = slot.multitask_id; | |
| res.error = false; | |
| res.stop = true; | |
| res.result_json = json | |
| { | |
| {"content", !slot.params.stream ? slot.generated_text : ""}, | |
| {"slot_id", slot.id}, | |
| {"stop", true}, | |
| {"model", params.model_alias}, | |
| {"tokens_predicted", slot.n_decoded}, | |
| {"tokens_evaluated", slot.num_prompt_tokens}, | |
| {"generation_settings", get_formated_generation(slot)}, | |
| {"prompt", slot.prompt}, | |
| {"truncated", slot.truncated}, | |
| {"stopped_eos", slot.stopped_eos}, | |
| {"stopped_word", slot.stopped_word}, | |
| {"stopped_limit", slot.stopped_limit}, | |
| {"stopping_word", slot.stopping_word}, | |
| {"tokens_cached", slot.n_past}, | |
| {"timings", slot.get_formated_timings()} | |
| }; | |
| if (slot.sparams.n_probs > 0) | |
| { | |
| std::vector<completion_token_output> probs = {}; | |
| if (!slot.params.stream && slot.stopped_word) | |
| { | |
| const std::vector<llama_token> stop_word_toks = common_tokenize(ctx, slot.stopping_word, false); | |
| probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size()); | |
| } | |
| else | |
| { | |
| probs = std::vector<completion_token_output>( | |
| slot.generated_token_probs.begin(), | |
| slot.generated_token_probs.end()); | |
| } | |
| res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs); | |
| } | |
| if (slot.oaicompat) | |
| { | |
| res.result_json["oaicompat_token_ctr"] = slot.n_decoded; | |
| res.result_json["model"] = slot.oaicompat_model; | |
| } | |
| queue_results.send(res); | |
| } | |
| void send_embedding(llama_client_slot &slot) | |
| { | |
| task_result res; | |
| res.id = slot.task_id; | |
| res.multitask_id = slot.multitask_id; | |
| res.error = false; | |
| res.stop = true; | |
| const int n_embd = llama_n_embd(model); | |
| if (!params.embedding) | |
| { | |
| LOG_WARNING("embedding disabled", { | |
| {"params.embedding", params.embedding}, | |
| }); | |
| res.result_json = json | |
| { | |
| {"embedding", std::vector<float>(n_embd, 0.0f)}, | |
| }; | |
| } | |
| else | |
| { | |
| const float *data = llama_get_embeddings(ctx); | |
| std::vector<float> embedding(data, data + n_embd); | |
| res.result_json = json | |
| { | |
| {"embedding", embedding }, | |
| }; | |
| } | |
| queue_results.send(res); | |
| } | |
| void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id) | |
| { | |
| task_server task; | |
| task.id = task_id; | |
| task.target_id = 0; | |
| task.data = std::move(data); | |
| task.infill_mode = infill; | |
| task.embedding_mode = embedding; | |
| task.type = TASK_TYPE_COMPLETION; | |
| task.multitask_id = multitask_id; | |
| // when a completion task's prompt array is not a singleton, we split it into multiple requests | |
| // otherwise, it's a single-prompt task, we actually queue it | |
| // if there's numbers in the prompt array it will be treated as an array of tokens | |
| if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) { | |
| bool numbers = false; | |
| for (const auto& e : task.data.at("prompt")) { | |
| if (e.is_number()) { | |
| numbers = true; | |
| break; | |
| } | |
| } | |
| // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers, | |
| // it will completely stall the server. I don't know where the bug for this is. | |
| // | |
| // if there are numbers, it needs to be treated like a single prompt, | |
| // queue_tasks handles a mix of strings and numbers just fine. | |
| if (numbers) { | |
| queue_tasks.post(task); | |
| } else { | |
| split_multiprompt_task(task_id, task); | |
| } | |
| } else { | |
| queue_tasks.post(task); | |
| } | |
| } | |
| // for multiple images processing | |
| bool ingest_images(llama_client_slot &slot, int n_batch) | |
| { | |
| int image_idx = 0; | |
| while (image_idx < (int) slot.images.size()) | |
| { | |
| slot_image &img = slot.images[image_idx]; | |
| // process prefix prompt | |
| for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) | |
| { | |
| const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); | |
| llama_batch batch_view = { | |
| n_tokens, | |
| batch.token + i, | |
| nullptr, | |
| batch.pos + i, | |
| batch.n_seq_id + i, | |
| batch.seq_id + i, | |
| batch.logits + i, | |
| }; | |
| if (llama_decode(ctx, batch_view)) | |
| { | |
| LOG("%s : failed to eval\n", __func__); | |
| return false; | |
| } | |
| } | |
| // process image with llm | |
| for (int i = 0; i < img.image_tokens; i += n_batch) | |
| { | |
| int n_eval = img.image_tokens - i; | |
| if (n_eval > n_batch) | |
| { | |
| n_eval = n_batch; | |
| } | |
| const int n_embd = llama_n_embd(model); | |
| float * embd = img.image_embedding + i * n_embd; | |
| llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, slot.n_past, 0); | |
| if (llama_decode(ctx, llava_batch.batch)) | |
| { | |
| LOG("%s : failed to eval image\n", __func__); | |
| return false; | |
| } | |
| slot.n_past += n_eval; | |
| } | |
| image_idx++; | |
| common_batch_clear(batch); | |
| // append prefix of next image | |
| const auto json_prompt = (image_idx >= (int) slot.images.size()) ? | |
| slot.params.input_suffix : // no more images, then process suffix prompt | |
| (json)(slot.images[image_idx].prefix_prompt); | |
| std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image | |
| for (int i = 0; i < (int) append_tokens.size(); ++i) | |
| { | |
| common_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true); | |
| slot.n_past += 1; | |
| } | |
| } | |
| return true; | |
| } | |
| void request_cancel(int task_id) | |
| { | |
| task_server task; | |
| task.type = TASK_TYPE_CANCEL; | |
| task.target_id = task_id; | |
| queue_tasks.post(task); | |
| } | |
| void split_multiprompt_task(int multitask_id, task_server& multiprompt_task) | |
| { | |
| int prompt_count = multiprompt_task.data.at("prompt").size(); | |
| if (prompt_count <= 1) { | |
| send_error(multiprompt_task, "error while handling multiple prompts"); | |
| return; | |
| } | |
| // generate all the ID for subtask | |
| std::vector<int> subtask_ids(prompt_count); | |
| for (int i = 0; i < prompt_count; i++) | |
| { | |
| subtask_ids[i] = queue_tasks.get_new_id(); | |
| } | |
| // queue up the multitask so we can track its subtask progression | |
| queue_tasks.add_multitask(multitask_id, subtask_ids); | |
| // add subtasks | |
| for (int i = 0; i < prompt_count; i++) | |
| { | |
| json subtask_data = multiprompt_task.data; | |
| subtask_data["prompt"] = subtask_data["prompt"][i]; | |
| // subtasks inherit everything else (infill mode, embedding mode, etc.) | |
| request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id); | |
| } | |
| } | |
| void process_single_task(task_server& task) | |
| { | |
| switch (task.type) | |
| { | |
| case TASK_TYPE_COMPLETION: { | |
| llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1)); | |
| if (slot == nullptr) | |
| { | |
| // if no slot is available, we defer this task for processing later | |
| LOG_VERBOSE("no slot is available", {{"task_id", task.id}}); | |
| queue_tasks.defer(task); | |
| break; | |
| } | |
| if (task.data.contains("system_prompt")) | |
| { | |
| if (!all_slots_are_idle) { | |
| send_error(task, "system prompt can only be updated when all slots are idle"); | |
| break; | |
| } | |
| process_system_prompt_data(task.data["system_prompt"]); | |
| // reset cache_tokens for all slots | |
| for (llama_client_slot &slot : slots) | |
| { | |
| slot.cache_tokens.clear(); | |
| slot.n_past = 0; | |
| slot.n_past_se = 0; | |
| } | |
| } | |
| slot->reset(); | |
| slot->infill = task.infill_mode; | |
| slot->embedding = task.embedding_mode; | |
| slot->task_id = task.id; | |
| slot->multitask_id = task.multitask_id; | |
| if (!launch_slot_with_data(slot, task.data)) | |
| { | |
| // send error result | |
| send_error(task, "internal_error"); | |
| break; | |
| } | |
| } break; | |
| case TASK_TYPE_CANCEL: { // release slot linked with the task id | |
| for (auto & slot : slots) | |
| { | |
| if (slot.task_id == task.target_id) | |
| { | |
| slot.release(); | |
| break; | |
| } | |
| } | |
| } break; | |
| case TASK_TYPE_NEXT_RESPONSE: { | |
| // do nothing | |
| } break; | |
| } | |
| } | |
| void on_finish_multitask(task_multi& multitask) | |
| { | |
| // all subtasks done == multitask is done | |
| task_result result; | |
| result.id = multitask.id; | |
| result.stop = true; | |
| result.error = false; | |
| // collect json results into one json result | |
| std::vector<json> result_jsons; | |
| for (auto& subres : multitask.results) | |
| { | |
| result_jsons.push_back(subres.result_json); | |
| result.error = result.error && subres.error; | |
| } | |
| result.result_json = json{ { "results", result_jsons } }; | |
| queue_results.send(result); | |
| } | |
| bool update_slots() { | |
| if (system_need_update) | |
| { | |
| LOG_INFO("updating system prompt", {}); | |
| update_system_prompt(); | |
| } | |
| common_batch_clear(batch); | |
| if (all_slots_are_idle) | |
| { | |
| if (system_prompt.empty() && clean_kv_cache) | |
| { | |
| LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {}); | |
| kv_cache_clear(); | |
| } | |
| return true; | |
| } | |
| LOG_VERBOSE("posting NEXT_RESPONSE", {}); | |
| task_server task; | |
| task.type = TASK_TYPE_NEXT_RESPONSE; | |
| task.target_id = -1; | |
| queue_tasks.post(task); | |
| for (llama_client_slot &slot : slots) | |
| { | |
| if (slot.ga_n == 1) | |
| { | |
| if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx) | |
| { | |
| // START LOCALAI changes | |
| // Temporary disable context-shifting as it can lead to infinite loops (issue: https://github.com/ggerganov/llama.cpp/issues/3969) | |
| // See: https://github.com/mudler/LocalAI/issues/1333 | |
| // Context is exhausted, release the slot | |
| slot.release(); | |
| send_final_response(slot); | |
| slot.cache_tokens.clear(); | |
| slot.n_past = 0; | |
| slot.truncated = false; | |
| slot.has_next_token = true; | |
| LOG("Context exhausted. Slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size()); | |
| continue; | |
| // END LOCALAI changes | |
| } | |
| } | |
| } | |
| // decode any currently ongoing sequences | |
| LOG_VERBOSE("decoding ongoing sequences", {}); | |
| for (auto & slot : slots) | |
| { | |
| // release the slot | |
| if (slot.command == RELEASE) | |
| { | |
| slot.state = IDLE; | |
| slot.command = NONE; | |
| slot.t_last_used = ggml_time_us(); | |
| LOG_INFO("slot released", { | |
| {"slot_id", slot.id}, | |
| {"task_id", slot.task_id}, | |
| {"n_ctx", n_ctx}, | |
| {"n_past", slot.n_past}, | |
| {"n_system_tokens", system_tokens.size()}, | |
| {"n_cache_tokens", slot.cache_tokens.size()}, | |
| {"truncated", slot.truncated} | |
| }); | |
| queue_tasks.notify_slot_changed(); | |
| continue; | |
| } | |
| if (slot.state == IDLE) | |
| { | |
| continue; | |
| } | |
| slot.i_batch = batch.n_tokens; | |
| const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; | |
| // TODO: we always have to take into account the "system_tokens" | |
| // this is not great and needs to be improved somehow | |
| common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true); | |
| slot.n_past += 1; | |
| } | |
| // process in chunks of params.n_batch | |
| int32_t n_batch = params.n_batch; | |
| // assign workload to the slots | |
| if (params.cont_batching || batch.n_tokens == 0) | |
| { | |
| for (auto & slot : slots) | |
| { | |
| const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty(); | |
| // empty prompt passed -> release the slot and send empty response | |
| // note: infill mode allows empty prompt | |
| if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill) | |
| { | |
| slot.release(); | |
| slot.print_timings(); | |
| send_final_response(slot); | |
| continue; | |
| } | |
| // need process the prompt | |
| if (slot.state == IDLE && slot.command == LOAD_PROMPT) | |
| { | |
| slot.state = PROCESSING; | |
| slot.command = NONE; | |
| std::vector<llama_token> prompt_tokens; | |
| slot.t_start_process_prompt = ggml_time_us(); | |
| slot.t_start_genereration = 0; | |
| if (slot.infill) | |
| { | |
| bool suff_rm_leading_spc = true; | |
| if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) | |
| { | |
| params.input_suffix.erase(0, 1); | |
| suff_rm_leading_spc = false; | |
| } | |
| auto prefix_tokens = tokenize(slot.params.input_prefix, false); | |
| auto suffix_tokens = tokenize(slot.params.input_suffix, false); | |
| const int space_token = 29871; // TODO: this should not be hardcoded | |
| if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) { | |
| suffix_tokens.erase(suffix_tokens.begin()); | |
| } | |
| prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); | |
| prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS | |
| prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model)); | |
| prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); | |
| prefix_tokens.push_back(llama_token_middle(model)); | |
| prompt_tokens = prefix_tokens; | |
| } | |
| else | |
| { | |
| prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt | |
| } | |
| slot.num_prompt_tokens = prompt_tokens.size(); | |
| if (slot.params.n_keep < 0) | |
| { | |
| slot.params.n_keep = slot.num_prompt_tokens; | |
| } | |
| slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); | |
| // if input prompt is too big, truncate it | |
| if (slot.num_prompt_tokens >= slot.n_ctx) | |
| { | |
| const int n_left = slot.n_ctx - slot.params.n_keep; | |
| const int n_block_size = n_left / 2; | |
| const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; | |
| std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep); | |
| new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end()); | |
| LOG_VERBOSE("input truncated", { | |
| {"n_ctx", slot.n_ctx}, | |
| {"n_keep", slot.params.n_keep}, | |
| {"n_left", n_left}, | |
| {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, | |
| }); | |
| slot.truncated = true; | |
| prompt_tokens = new_tokens; | |
| slot.num_prompt_tokens = prompt_tokens.size(); | |
| GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx); | |
| } | |
| if (!slot.params.cache_prompt) | |
| { | |
| common_sampler_reset(slot.ctx_sampling); | |
| slot.n_past = 0; | |
| slot.n_past_se = 0; | |
| slot.ga_i = 0; | |
| slot.num_prompt_tokens_processed = slot.num_prompt_tokens; | |
| } | |
| else | |
| { | |
| // push the prompt into the sampling context (do not apply grammar) | |
| for (auto &token : prompt_tokens) | |
| { | |
| common_sampler_accept(slot.ctx_sampling, token, false); | |
| } | |
| slot.n_past = common_part(slot.cache_tokens, prompt_tokens); | |
| // the last token of the cache is not in the KV cache until the next call to llama_decode | |
| // (it was sampled, pushed into the "cache_tokens", but not yet put in the context) | |
| if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size()) | |
| { | |
| slot.n_past -= 1; | |
| } | |
| slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past; | |
| if (slot.ga_n != 1) | |
| { | |
| int ga_i = 0; | |
| int32_t ga_n = slot.ga_n; | |
| int32_t ga_w = slot.ga_w; | |
| int32_t slot_npast = 0; | |
| for (int k = 0; k < slot.n_past; ++k) | |
| { | |
| while (slot_npast >= ga_i + ga_w) { | |
| const int bd = (ga_w/ga_n)*(ga_n - 1); | |
| slot_npast -= bd; | |
| ga_i += ga_w/ga_n; | |
| } | |
| slot_npast++; | |
| } | |
| slot.n_past_se = slot_npast; | |
| slot.ga_i = ga_i; | |
| } | |
| LOG_INFO("slot progression", { | |
| { "slot_id", slot.id }, | |
| { "task_id", slot.task_id }, | |
| { "n_past", slot.n_past }, | |
| { "num_prompt_tokens_processed", slot.num_prompt_tokens_processed } | |
| }); | |
| } | |
| slot.cache_tokens = prompt_tokens; | |
| if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0) | |
| { | |
| // we have to evaluate at least 1 token to generate logits. | |
| LOG_INFO("we have to evaluate at least 1 token to generate logits", { | |
| { "slot_id", slot.id }, | |
| { "task_id", slot.task_id } | |
| }); | |
| slot.n_past--; | |
| if (slot.ga_i > 0) | |
| { | |
| slot.n_past_se--; | |
| } | |
| } | |
| int p0 = (int) system_tokens.size() + slot.n_past; | |
| LOG_INFO("kv cache rm [p0, end)", { | |
| { "slot_id", slot.id }, | |
| { "task_id", slot.task_id }, | |
| { "p0", p0 } | |
| }); | |
| llama_kv_cache_seq_rm(ctx, slot.id, p0, -1); | |
| LOG_VERBOSE("prompt ingested", { | |
| {"n_past", slot.n_past}, | |
| {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)}, | |
| {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())}, | |
| }); | |
| const bool has_images = process_images(slot); | |
| // process the prefix of first image | |
| std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens; | |
| int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; | |
| int32_t ga_i = slot.ga_i; | |
| int32_t ga_n = slot.ga_n; | |
| int32_t ga_w = slot.ga_w; | |
| for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past) | |
| { | |
| if (slot.ga_n != 1) | |
| { | |
| while (slot_npast >= ga_i + ga_w) { | |
| const int bd = (ga_w/ga_n)*(ga_n - 1); | |
| slot_npast -= bd; | |
| ga_i += ga_w/ga_n; | |
| } | |
| } | |
| common_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false); | |
| slot_npast++; | |
| } | |
| if (has_images && !ingest_images(slot, n_batch)) | |
| { | |
| LOG_ERR("%s: failed processing images Slot id : %d, Task id: %d", | |
| __func__, | |
| slot.id, | |
| slot.task_id | |
| ); | |
| // FIXME @phymbert: to be properly tested | |
| // early returning without changing the slot state will block the slot for ever | |
| // no one at the moment is checking the return value | |
| return false; | |
| } | |
| // extract the logits only for the last token | |
| if (batch.n_tokens > 0) | |
| { | |
| batch.logits[batch.n_tokens - 1] = true; | |
| } | |
| slot.n_decoded = 0; | |
| slot.i_batch = batch.n_tokens - 1; | |
| } | |
| } | |
| } | |
| if (batch.n_tokens == 0) | |
| { | |
| all_slots_are_idle = true; | |
| return true; | |
| } | |
| for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) | |
| { | |
| const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); | |
| for (auto & slot : slots) | |
| { | |
| if (slot.ga_n != 1) | |
| { | |
| // context extension via Self-Extend | |
| while (slot.n_past_se >= slot.ga_i + slot.ga_w) | |
| { | |
| const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w; | |
| const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1); | |
| const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w; | |
| LOG("\n"); | |
| LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd); | |
| LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n); | |
| LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd); | |
| llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd); | |
| llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n); | |
| llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd); | |
| slot.n_past_se -= bd; | |
| slot.ga_i += slot.ga_w / slot.ga_n; | |
| LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i); | |
| } | |
| slot.n_past_se += n_tokens; | |
| } | |
| } | |
| llama_batch batch_view = | |
| { | |
| n_tokens, | |
| batch.token + i, | |
| nullptr, | |
| batch.pos + i, | |
| batch.n_seq_id + i, | |
| batch.seq_id + i, | |
| batch.logits + i, | |
| }; | |
| const int ret = llama_decode(ctx, batch_view); | |
| if (ret != 0) | |
| { | |
| if (n_batch == 1 || ret < 0) | |
| { | |
| // if you get here, it means the KV cache is full - try increasing it via the context size | |
| LOG("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret); | |
| return false; | |
| } | |
| LOG("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2); | |
| // retry with half the batch size to try to find a free slot in the KV cache | |
| n_batch /= 2; | |
| i -= n_batch; | |
| continue; | |
| } | |
| for (auto & slot : slots) | |
| { | |
| if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) | |
| { | |
| continue; | |
| } | |
| // prompt evaluated for embedding | |
| if (slot.embedding) | |
| { | |
| send_embedding(slot); | |
| slot.release(); | |
| slot.i_batch = -1; | |
| continue; | |
| } | |
| completion_token_output result; | |
| const llama_token id = common_sampler_sample(slot.ctx_sampling, ctx, slot.i_batch - i); | |
| common_sampler_accept(slot.ctx_sampling, id, true); | |
| slot.n_decoded += 1; | |
| if (slot.n_decoded == 1) | |
| { | |
| slot.t_start_genereration = ggml_time_us(); | |
| slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3; | |
| metrics.on_prompt_eval(slot); | |
| } | |
| result.tok = id; | |
| const auto * cur_p = common_sampler_get_candidates(slot.ctx_sampling); | |
| for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) { | |
| result.probs.push_back({ | |
| cur_p->data[i].id, | |
| i >= cur_p->size ? 0.0f : cur_p->data[i].p, | |
| }); | |
| } | |
| if (!process_token(result, slot)) | |
| { | |
| slot.release(); | |
| slot.print_timings(); | |
| send_final_response(slot); | |
| metrics.on_prediction(slot); | |
| } | |
| slot.i_batch = -1; | |
| } | |
| } | |
| LOG_VERBOSE("slots updated", {}); | |
| return true; | |
| } | |
| void run_on_all_tasks_finished() { | |
| update_slots(); | |
| } | |
| }; | |
| /* llama.cpp completion api semantics */ | |
| static json format_partial_response( | |
| llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs | |
| ) { | |
| json res = json | |
| { | |
| {"content", content }, | |
| {"stop", false}, | |
| {"slot_id", slot->id }, | |
| {"multimodal", llama.multimodal } | |
| }; | |
| if (slot->sparams.n_probs > 0) | |
| { | |
| res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); | |
| } | |
| return res; | |
| } | |
| struct token_translator | |
| { | |
| llama_context * ctx; | |
| std::string operator()(llama_token tok) const { return common_token_to_piece(ctx, tok); } | |
| std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); } | |
| }; | |
| static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot) | |
| { | |
| auto & gtps = slot->generated_token_probs; | |
| auto translator = token_translator{llama.ctx}; | |
| auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); }; | |
| const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen); | |
| if (slot->generated_text.capacity() < slot->generated_text.size() + len) | |
| { | |
| slot->generated_text.reserve(slot->generated_text.size() + len); | |
| } | |
| for (const completion_token_output & cto : gtps) | |
| { | |
| slot->generated_text += translator(cto); | |
| } | |
| } | |
| std::function<void(int)> shutdown_handler; | |
| inline void signal_handler(int signal) { shutdown_handler(signal); } | |
| ///////////////////////////////// | |
| //////////////////////////////// | |
| //////// LOCALAI code starts below here | |
| ///////////////////////////////// | |
| //////////////////////////////// | |
| bool loaded_model; // TODO: add a mutex for this, but happens only once loading the model | |
| // The class has a llama instance that is shared across all RPCs | |
| llama_server_context llama; | |
| static void start_llama_server() { | |
| // Wait for model to be loaded first | |
| while (!loaded_model) { | |
| std::this_thread::sleep_for(std::chrono::milliseconds(100)); | |
| } | |
| llama.queue_tasks.on_new_task(std::bind( | |
| &llama_server_context::process_single_task, &llama, std::placeholders::_1)); | |
| llama.queue_tasks.on_finish_multitask(std::bind( | |
| &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1)); | |
| llama.queue_tasks.on_all_tasks_finished(std::bind( | |
| &llama_server_context::run_on_all_tasks_finished, &llama)); | |
| llama.queue_results.on_multitask_update(std::bind( | |
| &llama_server_queue::update_multitask, | |
| &llama.queue_tasks, | |
| std::placeholders::_1, | |
| std::placeholders::_2, | |
| std::placeholders::_3 | |
| )); | |
| llama.queue_tasks.start_loop(); | |
| } | |
| json parse_options(bool streaming, const backend::PredictOptions* predict, llama_server_context &llama) | |
| { | |
| // This is for example a slot data from the json data | |
| // slot->params.stream = json_value(data, "stream", false); | |
| // slot->params.cache_prompt = json_value(data, "cache_prompt", false); | |
| // slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); | |
| // slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); | |
| // slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); | |
| // slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); | |
| // slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); | |
| // slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); | |
| // slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); | |
| // slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); | |
| // slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); | |
| // slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); | |
| // slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); | |
| // slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); | |
| // slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); | |
| // slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); | |
| // slot->params.seed = json_value(data, "seed", default_params.seed); | |
| // slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); | |
| // slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); | |
| // Create now a json data from the prediction options instead | |
| // | |
| json data; | |
| data["stream"] = streaming; | |
| data["cache_prompt"] = predict->promptcacheall(); | |
| data["n_predict"] = predict->tokens() == 0 ? -1 : predict->tokens(); | |
| data["top_k"] = predict->topk(); | |
| data["top_p"] = predict->topp(); | |
| data["typical_p"] = predict->typicalp(); | |
| data["temperature"] = predict->temperature(); | |
| data["repeat_last_n"] = predict->repeat(); | |
| data["repeat_penalty"] = predict->penalty(); | |
| data["frequency_penalty"] = predict->frequencypenalty(); | |
| data["presence_penalty"] = predict->presencepenalty(); | |
| data["mirostat"] = predict->mirostat(); | |
| data["mirostat_tau"] = predict->mirostattau(); | |
| data["mirostat_eta"] = predict->mirostateta(); | |
| data["penalize_nl"] = predict->penalizenl(); | |
| data["n_keep"] = predict->nkeep(); | |
| data["seed"] = predict->seed(); | |
| data["grammar"] = predict->grammar(); | |
| data["prompt"] = predict->prompt(); | |
| data["ignore_eos"] = predict->ignoreeos(); | |
| data["embeddings"] = predict->embeddings(); | |
| // Add the correlationid to json data | |
| data["correlation_id"] = predict->correlationid(); | |
| // for each image in the request, add the image data | |
| // | |
| for (int i = 0; i < predict->images_size(); i++) { | |
| data["image_data"].push_back(json | |
| { | |
| {"id", i}, | |
| {"data", predict->images(i)}, | |
| }); | |
| } | |
| data["stop"] = predict->stopprompts(); | |
| // data["n_probs"] = predict->nprobs(); | |
| //TODO: images, | |
| return data; | |
| } | |
| // static void parse_options_completion(bool streaming,const backend::PredictOptions* predict, llama_server_context &llama) | |
| // { | |
| // // https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L673 | |
| // gpt_params default_params; | |
| // llama.stream = streaming; | |
| // llama.params.n_predict = predict->tokens() == 0 ? -1 : predict->tokens(); | |
| // llama.params.sparams.top_k = predict->topk(); | |
| // llama.params.sparams.top_p = predict->topp(); | |
| // llama.params.sparams.typical_p = predict->typicalp(); | |
| // llama.params.sparams.penalty_last_n = predict->repeat(); | |
| // llama.params.sparams.temp = predict->temperature(); | |
| // llama.params.sparams.penalty_repeat = predict->penalty(); | |
| // llama.params.sparams.penalty_present = predict->presencepenalty(); | |
| // llama.params.sparams.penalty_freq = predict->frequencypenalty(); | |
| // llama.params.sparams.mirostat = predict->mirostat(); | |
| // llama.params.sparams.mirostat_tau = predict->mirostattau(); | |
| // llama.params.sparams.mirostat_eta = predict->mirostateta(); | |
| // llama.params.sparams.penalize_nl = predict->penalizenl(); | |
| // llama.params.n_keep = predict->nkeep(); | |
| // llama.params.seed = predict->seed(); | |
| // llama.params.sparams.grammar = predict->grammar(); | |
| // // llama.params.n_probs = predict-> | |
| // llama.params.prompt = predict->prompt(); | |
| // llama.params.sparams.logit_bias.clear(); | |
| // if (predict->ignoreeos()) | |
| // { | |
| // llama.params.sparams.logit_bias[llama_token_eos(llama.model)] = -INFINITY; | |
| // } | |
| // // const auto &logit_bias = body.find("logit_bias"); | |
| // // if (logit_bias != body.end() && logit_bias->is_array()) | |
| // // { | |
| // // const int n_vocab = llama_n_vocab(llama.model); | |
| // // for (const auto &el : *logit_bias) | |
| // // { | |
| // // if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) | |
| // // { | |
| // // llama_token tok = el[0].get<llama_token>(); | |
| // // if (tok >= 0 && tok < n_vocab) | |
| // // { | |
| // // if (el[1].is_number()) | |
| // // { | |
| // // llama.params.logit_bias[tok] = el[1].get<float>(); | |
| // // } | |
| // // else if (el[1].is_boolean() && !el[1].get<bool>()) | |
| // // { | |
| // // llama.params.logit_bias[tok] = -INFINITY; | |
| // // } | |
| // // } | |
| // // } | |
| // // } | |
| // // } | |
| // llama.params.antiprompt.clear(); | |
| // for (const std::string& stopPrompt : predict->stopprompts()) { | |
| // if (!stopPrompt.empty()) | |
| // { | |
| // llama.params.antiprompt.push_back(stopPrompt); | |
| // } | |
| // } | |
| // } | |
| static void params_parse(const backend::ModelOptions* request, | |
| common_params & params) { | |
| // this is comparable to: https://github.com/ggerganov/llama.cpp/blob/d9b33fe95bd257b36c84ee5769cc048230067d6f/examples/server/server.cpp#L1809 | |
| params.model = request->modelfile(); | |
| if (!request->mmproj().empty()) { | |
| // get the directory of modelfile | |
| std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\")); | |
| params.mmproj = model_dir + "/"+ request->mmproj(); | |
| } | |
| // params.model_alias ?? | |
| params.model_alias = request->modelfile(); | |
| params.n_ctx = request->contextsize(); | |
| //params.memory_f16 = request->f16memory(); | |
| params.cpuparams.n_threads = request->threads(); | |
| params.n_gpu_layers = request->ngpulayers(); | |
| params.n_batch = request->nbatch(); | |
| // Set params.n_parallel by environment variable (LLAMA_PARALLEL), defaults to 1 | |
| //params.n_parallel = 1; | |
| const char *env_parallel = std::getenv("LLAMACPP_PARALLEL"); | |
| if (env_parallel != NULL) { | |
| params.n_parallel = std::stoi(env_parallel); | |
| params.cont_batching = true; | |
| } else { | |
| params.n_parallel = 1; | |
| } | |
| const char *llama_grpc_servers = std::getenv("LLAMACPP_GRPC_SERVERS"); | |
| if (llama_grpc_servers != NULL) { | |
| params.rpc_servers = std::string(llama_grpc_servers); | |
| } | |
| // TODO: Add yarn | |
| if (!request->tensorsplit().empty()) { | |
| std::string arg_next = request->tensorsplit(); | |
| // split string by , and / | |
| const std::regex regex{ R"([,/]+)" }; | |
| std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; | |
| std::vector<std::string> split_arg{ it, {} }; | |
| GGML_ASSERT(split_arg.size() <= llama_max_devices()); | |
| for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) { | |
| if (i_device < split_arg.size()) { | |
| params.tensor_split[i_device] = std::stof(split_arg[i_device]); | |
| } | |
| else { | |
| params.tensor_split[i_device] = 0.0f; | |
| } | |
| } | |
| } | |
| if (!request->maingpu().empty()) { | |
| params.main_gpu = std::stoi(request->maingpu()); | |
| } | |
| if (!request->loraadapter().empty() && !request->lorabase().empty()) { | |
| float scale_factor = 1.0f; | |
| if (request->lorascale() != 0.0f) { | |
| scale_factor = request->lorascale(); | |
| } | |
| // get the directory of modelfile | |
| std::string model_dir = params.model.substr(0, params.model.find_last_of("/\\")); | |
| params.lora_adapters.push_back({ model_dir + "/"+request->loraadapter(), scale_factor }); | |
| } | |
| params.use_mlock = request->mlock(); | |
| params.use_mmap = request->mmap(); | |
| params.flash_attn = request->flashattention(); | |
| params.no_kv_offload = request->nokvoffload(); | |
| params.embedding = request->embeddings(); | |
| if (request->ropescaling() == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } | |
| else if (request->ropescaling() == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } | |
| else { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } | |
| if ( request->yarnextfactor() != 0.0f ) { | |
| params.yarn_ext_factor = request->yarnextfactor(); | |
| } | |
| if ( request->yarnattnfactor() != 0.0f ) { | |
| params.yarn_attn_factor = request->yarnattnfactor(); | |
| } | |
| if ( request->yarnbetafast() != 0.0f ) { | |
| params.yarn_beta_fast = request->yarnbetafast(); | |
| } | |
| if ( request->yarnbetaslow() != 0.0f ) { | |
| params.yarn_beta_slow = request->yarnbetaslow(); | |
| } | |
| if ( request->ropefreqbase() != 0.0f ) { | |
| params.rope_freq_base = request->ropefreqbase(); | |
| } | |
| if ( request->ropefreqscale() != 0.0f ) { | |
| params.rope_freq_scale = request->ropefreqscale(); | |
| } | |
| } | |
| // GRPC Server start | |
| class BackendServiceImpl final : public backend::Backend::Service { | |
| public: | |
| grpc::Status Health(ServerContext* context, const backend::HealthMessage* request, backend::Reply* reply) { | |
| // Implement Health RPC | |
| reply->set_message("OK"); | |
| return Status::OK; | |
| } | |
| grpc::Status LoadModel(ServerContext* context, const backend::ModelOptions* request, backend::Result* result) { | |
| // Implement LoadModel RPC | |
| common_params params; | |
| params_parse(request, params); | |
| llama_backend_init(); | |
| llama_numa_init(params.numa); | |
| // load the model | |
| if (!llama.load_model(params)) | |
| { | |
| result->set_message("Failed loading model"); | |
| result->set_success(false); | |
| return Status::CANCELLED; | |
| } | |
| llama.initialize(); | |
| result->set_message("Loading succeeded"); | |
| result->set_success(true); | |
| loaded_model = true; | |
| return Status::OK; | |
| } | |
| grpc::Status PredictStream(grpc::ServerContext* context, const backend::PredictOptions* request, grpc::ServerWriter<backend::Reply>* writer) override { | |
| json data = parse_options(true, request, llama); | |
| const int task_id = llama.queue_tasks.get_new_id(); | |
| llama.queue_results.add_waiting_task_id(task_id); | |
| llama.request_completion(task_id, data, false, false, -1); | |
| while (true) | |
| { | |
| task_result result = llama.queue_results.recv(task_id); | |
| if (!result.error) { | |
| const std::string str = | |
| "data: " + | |
| result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) + | |
| "\n\n"; | |
| LOG_VERBOSE("data stream", { | |
| { "to_send", str } | |
| }); | |
| backend::Reply reply; | |
| // print it | |
| std::string completion_text = result.result_json.value("content", ""); | |
| reply.set_message(completion_text); | |
| int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0); | |
| reply.set_tokens(tokens_predicted); | |
| int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0); | |
| reply.set_prompt_tokens(tokens_evaluated); | |
| // Log Request Correlation Id | |
| LOG_VERBOSE("correlation:", { | |
| { "id", data["correlation_id"] } | |
| }); | |
| // Send the reply | |
| writer->Write(reply); | |
| if (result.stop) { | |
| break; | |
| } | |
| } else { | |
| break; | |
| } | |
| } | |
| return grpc::Status::OK; | |
| } | |
| grpc::Status Predict(ServerContext* context, const backend::PredictOptions* request, backend::Reply* reply) { | |
| json data = parse_options(false, request, llama); | |
| const int task_id = llama.queue_tasks.get_new_id(); | |
| llama.queue_results.add_waiting_task_id(task_id); | |
| llama.request_completion(task_id, data, false, false, -1); | |
| std::string completion_text; | |
| task_result result = llama.queue_results.recv(task_id); | |
| if (!result.error && result.stop) { | |
| // Log Request Correlation Id | |
| LOG_VERBOSE("correlation:", { | |
| { "id", data["correlation_id"] } | |
| }); | |
| completion_text = result.result_json.value("content", ""); | |
| int32_t tokens_predicted = result.result_json.value("tokens_predicted", 0); | |
| int32_t tokens_evaluated = result.result_json.value("tokens_evaluated", 0); | |
| reply->set_prompt_tokens(tokens_evaluated); | |
| reply->set_tokens(tokens_predicted); | |
| reply->set_message(completion_text); | |
| } | |
| else | |
| { | |
| return grpc::Status::OK; | |
| } | |
| return grpc::Status::OK; | |
| } | |
| /// https://github.com/ggerganov/llama.cpp/blob/aa2341298924ac89778252015efcb792f2df1e20/examples/server/server.cpp#L2969 | |
| grpc::Status Embedding(ServerContext* context, const backend::PredictOptions* request, backend::EmbeddingResult* embeddingResult) { | |
| json data = parse_options(false, request, llama); | |
| const int task_id = llama.queue_tasks.get_new_id(); | |
| llama.queue_results.add_waiting_task_id(task_id); | |
| llama.request_completion(task_id, { {"prompt", data["embeddings"]}, { "n_predict", 0}, {"image_data", ""} }, false, true, -1); | |
| // get the result | |
| task_result result = llama.queue_results.recv(task_id); | |
| //std::cout << "Embedding result JSON" << result.result_json.dump() << std::endl; | |
| llama.queue_results.remove_waiting_task_id(task_id); | |
| if (!result.error && result.stop) { | |
| std::vector<float> embeddings = result.result_json.value("embedding", std::vector<float>()); | |
| // loop the vector and set the embeddings results | |
| for (int i = 0; i < embeddings.size(); i++) { | |
| embeddingResult->add_embeddings(embeddings[i]); | |
| } | |
| } | |
| else | |
| { | |
| return grpc::Status::OK; | |
| } | |
| return grpc::Status::OK; | |
| } | |
| grpc::Status GetMetrics(ServerContext* context, const backend::MetricsRequest* request, backend::MetricsResponse* response) { | |
| llama_client_slot* active_slot = llama.get_active_slot(); | |
| if (active_slot != nullptr) { | |
| // Calculate the tokens per second using existing logic | |
| double tokens_per_second = 1e3 / active_slot->t_token_generation * active_slot->n_decoded; | |
| // Populate the response with metrics | |
| response->set_slot_id(active_slot->id); | |
| response->set_prompt_json_for_slot(active_slot->prompt.dump()); | |
| response->set_tokens_per_second(tokens_per_second); | |
| response->set_tokens_generated(active_slot->n_decoded); | |
| response->set_prompt_tokens_processed(active_slot->num_prompt_tokens_processed); | |
| } else { | |
| // Handle case when no active slot exists | |
| response->set_slot_id(0); | |
| response->set_prompt_json_for_slot(""); | |
| response->set_tokens_per_second(0); | |
| response->set_tokens_generated(0); | |
| response->set_prompt_tokens_processed(0); | |
| } | |
| return grpc::Status::OK; | |
| } | |
| }; | |
| void RunServer(const std::string& server_address) { | |
| BackendServiceImpl service; | |
| ServerBuilder builder; | |
| builder.AddListeningPort(server_address, grpc::InsecureServerCredentials()); | |
| builder.RegisterService(&service); | |
| std::unique_ptr<Server> server(builder.BuildAndStart()); | |
| std::cout << "Server listening on " << server_address << std::endl; | |
| server->Wait(); | |
| } | |
| int main(int argc, char** argv) { | |
| std::string server_address("localhost:50051"); | |
| // Define long and short options | |
| struct option long_options[] = { | |
| {"addr", required_argument, nullptr, 'a'}, | |
| {nullptr, 0, nullptr, 0} | |
| }; | |
| // Parse command-line arguments | |
| int option; | |
| int option_index = 0; | |
| while ((option = getopt_long(argc, argv, "a:", long_options, &option_index)) != -1) { | |
| switch (option) { | |
| case 'a': | |
| server_address = optarg; | |
| break; | |
| default: | |
| std::cerr << "Usage: " << argv[0] << " [--addr=<address>] or [-a <address>]" << std::endl; | |
| return 1; | |
| } | |
| } | |
| // run the HTTP server in a thread - see comment below | |
| std::thread t([&]() | |
| { | |
| RunServer(server_address); | |
| return 0; | |
| }); | |
| //); | |
| start_llama_server(); | |
| std::cout << "stopping" << std::endl; | |
| t.join(); | |
| llama_backend_free(); | |
| return 0; | |
| } | |