Spaces:
Configuration error
Configuration error
| #!/usr/bin/env python3 | |
| from concurrent import futures | |
| import traceback | |
| import argparse | |
| from collections import defaultdict | |
| from enum import Enum | |
| import signal | |
| import sys | |
| import time | |
| import os | |
| from PIL import Image | |
| import torch | |
| import backend_pb2 | |
| import backend_pb2_grpc | |
| import grpc | |
| from diffusers import StableDiffusion3Pipeline, StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, \ | |
| EulerAncestralDiscreteScheduler, FluxPipeline, FluxTransformer2DModel | |
| from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import safety_checker | |
| from diffusers.utils import load_image, export_to_video | |
| from compel import Compel, ReturnedEmbeddingsType | |
| from optimum.quanto import freeze, qfloat8, quantize | |
| from transformers import CLIPTextModel, T5EncoderModel | |
| from safetensors.torch import load_file | |
| _ONE_DAY_IN_SECONDS = 60 * 60 * 24 | |
| COMPEL = os.environ.get("COMPEL", "0") == "1" | |
| XPU = os.environ.get("XPU", "0") == "1" | |
| CLIPSKIP = os.environ.get("CLIPSKIP", "1") == "1" | |
| SAFETENSORS = os.environ.get("SAFETENSORS", "1") == "1" | |
| CHUNK_SIZE = os.environ.get("CHUNK_SIZE", "8") | |
| FPS = os.environ.get("FPS", "7") | |
| DISABLE_CPU_OFFLOAD = os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1" | |
| FRAMES = os.environ.get("FRAMES", "64") | |
| if XPU: | |
| import intel_extension_for_pytorch as ipex | |
| print(ipex.xpu.get_device_name(0)) | |
| # If MAX_WORKERS are specified in the environment use it, otherwise default to 1 | |
| MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) | |
| # https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287 | |
| def sc(self, clip_input, images): return images, [False for i in images] | |
| # edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values | |
| safety_checker.StableDiffusionSafetyChecker.forward = sc | |
| from diffusers.schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| DPMSolverSinglestepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| HeunDiscreteScheduler, | |
| KDPM2AncestralDiscreteScheduler, | |
| KDPM2DiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| UniPCMultistepScheduler, | |
| ) | |
| # The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39 | |
| # Credits to https://github.com/neggles | |
| # See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111 | |
| class DiffusionScheduler(str, Enum): | |
| ddim = "ddim" # DDIM | |
| pndm = "pndm" # PNDM | |
| heun = "heun" # Heun | |
| unipc = "unipc" # UniPC | |
| euler = "euler" # Euler | |
| euler_a = "euler_a" # Euler a | |
| lms = "lms" # LMS | |
| k_lms = "k_lms" # LMS Karras | |
| dpm_2 = "dpm_2" # DPM2 | |
| k_dpm_2 = "k_dpm_2" # DPM2 Karras | |
| dpm_2_a = "dpm_2_a" # DPM2 a | |
| k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras | |
| dpmpp_2m = "dpmpp_2m" # DPM++ 2M | |
| k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras | |
| dpmpp_sde = "dpmpp_sde" # DPM++ SDE | |
| k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras | |
| dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE | |
| k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras | |
| def get_scheduler(name: str, config: dict = {}): | |
| is_karras = name.startswith("k_") | |
| if is_karras: | |
| # strip the k_ prefix and add the karras sigma flag to config | |
| name = name.lstrip("k_") | |
| config["use_karras_sigmas"] = True | |
| if name == DiffusionScheduler.ddim: | |
| sched_class = DDIMScheduler | |
| elif name == DiffusionScheduler.pndm: | |
| sched_class = PNDMScheduler | |
| elif name == DiffusionScheduler.heun: | |
| sched_class = HeunDiscreteScheduler | |
| elif name == DiffusionScheduler.unipc: | |
| sched_class = UniPCMultistepScheduler | |
| elif name == DiffusionScheduler.euler: | |
| sched_class = EulerDiscreteScheduler | |
| elif name == DiffusionScheduler.euler_a: | |
| sched_class = EulerAncestralDiscreteScheduler | |
| elif name == DiffusionScheduler.lms: | |
| sched_class = LMSDiscreteScheduler | |
| elif name == DiffusionScheduler.dpm_2: | |
| # Equivalent to DPM2 in K-Diffusion | |
| sched_class = KDPM2DiscreteScheduler | |
| elif name == DiffusionScheduler.dpm_2_a: | |
| # Equivalent to `DPM2 a`` in K-Diffusion | |
| sched_class = KDPM2AncestralDiscreteScheduler | |
| elif name == DiffusionScheduler.dpmpp_2m: | |
| # Equivalent to `DPM++ 2M` in K-Diffusion | |
| sched_class = DPMSolverMultistepScheduler | |
| config["algorithm_type"] = "dpmsolver++" | |
| config["solver_order"] = 2 | |
| elif name == DiffusionScheduler.dpmpp_sde: | |
| # Equivalent to `DPM++ SDE` in K-Diffusion | |
| sched_class = DPMSolverSinglestepScheduler | |
| elif name == DiffusionScheduler.dpmpp_2m_sde: | |
| # Equivalent to `DPM++ 2M SDE` in K-Diffusion | |
| sched_class = DPMSolverMultistepScheduler | |
| config["algorithm_type"] = "sde-dpmsolver++" | |
| else: | |
| raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'") | |
| return sched_class.from_config(config) | |
| # Implement the BackendServicer class with the service methods | |
| class BackendServicer(backend_pb2_grpc.BackendServicer): | |
| def Health(self, request, context): | |
| return backend_pb2.Reply(message=bytes("OK", 'utf-8')) | |
| def LoadModel(self, request, context): | |
| try: | |
| print(f"Loading model {request.Model}...", file=sys.stderr) | |
| print(f"Request {request}", file=sys.stderr) | |
| torchType = torch.float32 | |
| variant = None | |
| if request.F16Memory: | |
| torchType = torch.float16 | |
| variant = "fp16" | |
| local = False | |
| modelFile = request.Model | |
| self.cfg_scale = 7 | |
| self.PipelineType = request.PipelineType | |
| if request.CFGScale != 0: | |
| self.cfg_scale = request.CFGScale | |
| clipmodel = "Lykon/dreamshaper-8" | |
| if request.CLIPModel != "": | |
| clipmodel = request.CLIPModel | |
| clipsubfolder = "text_encoder" | |
| if request.CLIPSubfolder != "": | |
| clipsubfolder = request.CLIPSubfolder | |
| # Check if ModelFile exists | |
| if request.ModelFile != "": | |
| if os.path.exists(request.ModelFile): | |
| local = True | |
| modelFile = request.ModelFile | |
| fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local | |
| self.img2vid = False | |
| self.txt2vid = False | |
| ## img2img | |
| if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""): | |
| if fromSingleFile: | |
| self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile, | |
| torch_dtype=torchType) | |
| else: | |
| self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model, | |
| torch_dtype=torchType) | |
| elif request.PipelineType == "StableDiffusionDepth2ImgPipeline": | |
| self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model, | |
| torch_dtype=torchType) | |
| ## img2vid | |
| elif request.PipelineType == "StableVideoDiffusionPipeline": | |
| self.img2vid = True | |
| self.pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| request.Model, torch_dtype=torchType, variant=variant | |
| ) | |
| if not DISABLE_CPU_OFFLOAD: | |
| self.pipe.enable_model_cpu_offload() | |
| ## text2img | |
| elif request.PipelineType == "AutoPipelineForText2Image" or request.PipelineType == "": | |
| self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model, | |
| torch_dtype=torchType, | |
| use_safetensors=SAFETENSORS, | |
| variant=variant) | |
| elif request.PipelineType == "StableDiffusionPipeline": | |
| if fromSingleFile: | |
| self.pipe = StableDiffusionPipeline.from_single_file(modelFile, | |
| torch_dtype=torchType) | |
| else: | |
| self.pipe = StableDiffusionPipeline.from_pretrained(request.Model, | |
| torch_dtype=torchType) | |
| elif request.PipelineType == "DiffusionPipeline": | |
| self.pipe = DiffusionPipeline.from_pretrained(request.Model, | |
| torch_dtype=torchType) | |
| elif request.PipelineType == "VideoDiffusionPipeline": | |
| self.txt2vid = True | |
| self.pipe = DiffusionPipeline.from_pretrained(request.Model, | |
| torch_dtype=torchType) | |
| elif request.PipelineType == "StableDiffusionXLPipeline": | |
| if fromSingleFile: | |
| self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile, | |
| torch_dtype=torchType, | |
| use_safetensors=True) | |
| else: | |
| self.pipe = StableDiffusionXLPipeline.from_pretrained( | |
| request.Model, | |
| torch_dtype=torchType, | |
| use_safetensors=True, | |
| variant=variant) | |
| elif request.PipelineType == "StableDiffusion3Pipeline": | |
| if fromSingleFile: | |
| self.pipe = StableDiffusion3Pipeline.from_single_file(modelFile, | |
| torch_dtype=torchType, | |
| use_safetensors=True) | |
| else: | |
| self.pipe = StableDiffusion3Pipeline.from_pretrained( | |
| request.Model, | |
| torch_dtype=torchType, | |
| use_safetensors=True, | |
| variant=variant) | |
| elif request.PipelineType == "FluxPipeline": | |
| if fromSingleFile: | |
| self.pipe = FluxPipeline.from_single_file(modelFile, | |
| torch_dtype=torchType, | |
| use_safetensors=True) | |
| else: | |
| self.pipe = FluxPipeline.from_pretrained( | |
| request.Model, | |
| torch_dtype=torch.bfloat16) | |
| if request.LowVRAM: | |
| self.pipe.enable_model_cpu_offload() | |
| elif request.PipelineType == "FluxTransformer2DModel": | |
| dtype = torch.bfloat16 | |
| # specify from environment or default to "ChuckMcSneed/FLUX.1-dev" | |
| bfl_repo = os.environ.get("BFL_REPO", "ChuckMcSneed/FLUX.1-dev") | |
| transformer = FluxTransformer2DModel.from_single_file(modelFile, torch_dtype=dtype) | |
| quantize(transformer, weights=qfloat8) | |
| freeze(transformer) | |
| text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype) | |
| quantize(text_encoder_2, weights=qfloat8) | |
| freeze(text_encoder_2) | |
| self.pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype) | |
| self.pipe.transformer = transformer | |
| self.pipe.text_encoder_2 = text_encoder_2 | |
| if request.LowVRAM: | |
| self.pipe.enable_model_cpu_offload() | |
| if CLIPSKIP and request.CLIPSkip != 0: | |
| self.clip_skip = request.CLIPSkip | |
| else: | |
| self.clip_skip = 0 | |
| # torch_dtype needs to be customized. float16 for GPU, float32 for CPU | |
| # TODO: this needs to be customized | |
| if request.SchedulerType != "": | |
| self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config) | |
| if COMPEL: | |
| self.compel = Compel( | |
| tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2], | |
| text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], | |
| returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
| requires_pooled=[False, True] | |
| ) | |
| if request.ControlNet: | |
| self.controlnet = ControlNetModel.from_pretrained( | |
| request.ControlNet, torch_dtype=torchType, variant=variant | |
| ) | |
| self.pipe.controlnet = self.controlnet | |
| else: | |
| self.controlnet = None | |
| if request.LoraAdapter and not os.path.isabs(request.LoraAdapter): | |
| # modify LoraAdapter to be relative to modelFileBase | |
| request.LoraAdapter = os.path.join(request.ModelPath, request.LoraAdapter) | |
| device = "cpu" if not request.CUDA else "cuda" | |
| self.device = device | |
| if request.LoraAdapter: | |
| # Check if its a local file and not a directory ( we load lora differently for a safetensor file ) | |
| if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter): | |
| self.pipe.load_lora_weights(request.LoraAdapter) | |
| else: | |
| self.pipe.unet.load_attn_procs(request.LoraAdapter) | |
| if len(request.LoraAdapters) > 0: | |
| i = 0 | |
| adapters_name = [] | |
| adapters_weights = [] | |
| for adapter in request.LoraAdapters: | |
| if not os.path.isabs(adapter): | |
| adapter = os.path.join(request.ModelPath, adapter) | |
| self.pipe.load_lora_weights(adapter, adapter_name=f"adapter_{i}") | |
| adapters_name.append(f"adapter_{i}") | |
| i += 1 | |
| for adapters_weight in request.LoraScales: | |
| adapters_weights.append(adapters_weight) | |
| self.pipe.set_adapters(adapters_name, adapter_weights=adapters_weights) | |
| if request.CUDA: | |
| self.pipe.to('cuda') | |
| if self.controlnet: | |
| self.controlnet.to('cuda') | |
| if XPU: | |
| self.pipe = self.pipe.to("xpu") | |
| except Exception as err: | |
| return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
| # Implement your logic here for the LoadModel service | |
| # Replace this with your desired response | |
| return backend_pb2.Result(message="Model loaded successfully", success=True) | |
| # https://github.com/huggingface/diffusers/issues/3064 | |
| def load_lora_weights(self, checkpoint_path, multiplier, device, dtype): | |
| LORA_PREFIX_UNET = "lora_unet" | |
| LORA_PREFIX_TEXT_ENCODER = "lora_te" | |
| # load LoRA weight from .safetensors | |
| state_dict = load_file(checkpoint_path, device=device) | |
| updates = defaultdict(dict) | |
| for key, value in state_dict.items(): | |
| # it is suggested to print out the key, it usually will be something like below | |
| # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" | |
| layer, elem = key.split('.', 1) | |
| updates[layer][elem] = value | |
| # directly update weight in diffusers model | |
| for layer, elems in updates.items(): | |
| if "text" in layer: | |
| layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") | |
| curr_layer = self.pipe.text_encoder | |
| else: | |
| layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_") | |
| curr_layer = self.pipe.unet | |
| # find the target layer | |
| temp_name = layer_infos.pop(0) | |
| while len(layer_infos) > -1: | |
| try: | |
| curr_layer = curr_layer.__getattr__(temp_name) | |
| if len(layer_infos) > 0: | |
| temp_name = layer_infos.pop(0) | |
| elif len(layer_infos) == 0: | |
| break | |
| except Exception: | |
| if len(temp_name) > 0: | |
| temp_name += "_" + layer_infos.pop(0) | |
| else: | |
| temp_name = layer_infos.pop(0) | |
| # get elements for this layer | |
| weight_up = elems['lora_up.weight'].to(dtype) | |
| weight_down = elems['lora_down.weight'].to(dtype) | |
| alpha = elems['alpha'] if 'alpha' in elems else None | |
| if alpha: | |
| alpha = alpha.item() / weight_up.shape[1] | |
| else: | |
| alpha = 1.0 | |
| # update weight | |
| if len(weight_up.shape) == 4: | |
| curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
| else: | |
| curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down) | |
| def GenerateImage(self, request, context): | |
| prompt = request.positive_prompt | |
| steps = 1 | |
| if request.step != 0: | |
| steps = request.step | |
| # create a dictionary of values for the parameters | |
| options = { | |
| "negative_prompt": request.negative_prompt, | |
| "width": request.width, | |
| "height": request.height, | |
| "num_inference_steps": steps, | |
| } | |
| if request.src != "" and not self.controlnet and not self.img2vid: | |
| image = Image.open(request.src) | |
| options["image"] = image | |
| elif self.controlnet and request.src: | |
| pose_image = load_image(request.src) | |
| options["image"] = pose_image | |
| if CLIPSKIP and self.clip_skip != 0: | |
| options["clip_skip"] = self.clip_skip | |
| # Get the keys that we will build the args for our pipe for | |
| keys = options.keys() | |
| if request.EnableParameters != "": | |
| keys = request.EnableParameters.split(",") | |
| if request.EnableParameters == "none": | |
| keys = [] | |
| # create a dictionary of parameters by using the keys from EnableParameters and the values from defaults | |
| kwargs = {key: options[key] for key in keys} | |
| # Set seed | |
| if request.seed > 0: | |
| kwargs["generator"] = torch.Generator(device=self.device).manual_seed( | |
| request.seed | |
| ) | |
| if self.PipelineType == "FluxPipeline": | |
| kwargs["max_sequence_length"] = 256 | |
| if self.PipelineType == "FluxTransformer2DModel": | |
| kwargs["output_type"] = "pil" | |
| kwargs["generator"] = torch.Generator("cpu").manual_seed(0) | |
| if self.img2vid: | |
| # Load the conditioning image | |
| image = load_image(request.src) | |
| image = image.resize((1024, 576)) | |
| generator = torch.manual_seed(request.seed) | |
| frames = self.pipe(image, guidance_scale=self.cfg_scale, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0] | |
| export_to_video(frames, request.dst, fps=FPS) | |
| return backend_pb2.Result(message="Media generated successfully", success=True) | |
| if self.txt2vid: | |
| video_frames = self.pipe(prompt, guidance_scale=self.cfg_scale, num_inference_steps=steps, num_frames=int(FRAMES)).frames | |
| export_to_video(video_frames, request.dst) | |
| return backend_pb2.Result(message="Media generated successfully", success=True) | |
| image = {} | |
| if COMPEL: | |
| conditioning, pooled = self.compel.build_conditioning_tensor(prompt) | |
| kwargs["prompt_embeds"] = conditioning | |
| kwargs["pooled_prompt_embeds"] = pooled | |
| # pass the kwargs dictionary to the self.pipe method | |
| image = self.pipe( | |
| guidance_scale=self.cfg_scale, | |
| **kwargs | |
| ).images[0] | |
| else: | |
| # pass the kwargs dictionary to the self.pipe method | |
| image = self.pipe( | |
| prompt, | |
| guidance_scale=self.cfg_scale, | |
| **kwargs | |
| ).images[0] | |
| # save the result | |
| image.save(request.dst) | |
| return backend_pb2.Result(message="Media generated", success=True) | |
| def serve(address): | |
| server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) | |
| backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) | |
| server.add_insecure_port(address) | |
| server.start() | |
| print("Server started. Listening on: " + address, file=sys.stderr) | |
| # Define the signal handler function | |
| def signal_handler(sig, frame): | |
| print("Received termination signal. Shutting down...") | |
| server.stop(0) | |
| sys.exit(0) | |
| # Set the signal handlers for SIGINT and SIGTERM | |
| signal.signal(signal.SIGINT, signal_handler) | |
| signal.signal(signal.SIGTERM, signal_handler) | |
| try: | |
| while True: | |
| time.sleep(_ONE_DAY_IN_SECONDS) | |
| except KeyboardInterrupt: | |
| server.stop(0) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Run the gRPC server.") | |
| parser.add_argument( | |
| "--addr", default="localhost:50051", help="The address to bind the server to." | |
| ) | |
| args = parser.parse_args() | |
| serve(args.addr) | |