File size: 8,104 Bytes
6ead904 9442257 6ead904 9442257 6ead904 9442257 6ead904 9442257 6ead904 9442257 6ead904 9442257 6ead904 9442257 6ead904 9442257 6ead904 9442257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import whisper
import tempfile
import os
import torch
import sqlite3
import bcrypt
from moviepy.editor import VideoFileClip
import subprocess
import imageio_ffmpeg
# ------------------------------- DB Setup -------------------------------
conn = sqlite3.connect('users.db', check_same_thread=False)
cursor = conn.cursor()
cursor.execute('''CREATE TABLE IF NOT EXISTS users (
username TEXT PRIMARY KEY,
password TEXT NOT NULL
)''')
conn.commit()
# ------------------------------- Auth Helpers -------------------------------
def hash_password(password):
return bcrypt.hashpw(password.encode(), bcrypt.gensalt())
def verify_password(password, hashed):
return bcrypt.checkpw(password.encode(), hashed)
def add_user(username, password):
hashed_pwd = hash_password(password)
try:
cursor.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, hashed_pwd))
conn.commit()
return True
except:
return False
def authenticate_user(username, password):
cursor.execute("SELECT password FROM users WHERE username = ?", (username,))
result = cursor.fetchone()
if result and verify_password(password, result[0]):
return True
return False
# ------------------------------- Login / Signup UI -------------------------------
def login_signup_page():
st.set_page_config(page_title="Login | Hate Speech Classifier", layout="centered")
if 'page' not in st.session_state:
st.session_state.page = 'login'
st.markdown('<h1 style="text-align:center; color:#005f73;">π£οΈ Smart Hate Speech Classifier</h1>', unsafe_allow_html=True)
st.markdown('<p style="text-align:center; color:#0a9396;">Please log in or create a new account to continue.</p>', unsafe_allow_html=True)
if st.session_state.page == 'login':
username = st.text_input("π€ Username")
password = st.text_input("π Password", type="password")
if st.button("Login"):
if authenticate_user(username, password):
st.session_state.logged_in = True
st.session_state.username = username
st.session_state.page = "overview"
st.success("Login successful!")
st.rerun()
else:
st.error("Invalid credentials")
if st.button("New user? Create an account"):
st.session_state.page = 'register'
elif st.session_state.page == 'register':
new_user = st.text_input("π€ New Username")
new_pass = st.text_input("π New Password", type="password")
if st.button("Create Account"):
if add_user(new_user, new_pass):
st.success("Account created! You can now log in.")
else:
st.error("Username already exists!")
if st.button("Already have an account? Login"):
st.session_state.page = 'login'
# ------------------------------- Access Control -------------------------------
if "logged_in" not in st.session_state:
st.session_state.logged_in = False
if not st.session_state.logged_in:
login_signup_page()
st.stop()
# ------------------------------- FFmpeg Fix -------------------------------
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
def custom_run(cmd, *args, **kwargs):
if cmd[0] == "ffmpeg":
cmd[0] = ffmpeg_path
return subprocess.run(cmd, *args, **kwargs)
import whisper.audio
whisper.audio.run = custom_run
# ------------------------------- Load Models -------------------------------
@st.cache_resource
def load_whisper_model():
return whisper.load_model("tiny") # smaller model for less storage
@st.cache_resource
def load_bert_model():
model_name = "Hate-speech-CNERG/bert-base-uncased-hatexplain"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()
return tokenizer, model
whisper_model = load_whisper_model()
tokenizer, classifier_model = load_bert_model()
# ------------------------------- Classifier -------------------------------
HATE_KEYWORDS = ["ugly", "stupid", "idiot", "hate", "kill", "trash","fuck you","bitch"]
def classify_text(text):
if any(word in text.lower() for word in HATE_KEYWORDS):
return "Hate Speech", 1.0
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = classifier_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
confidence, pred = torch.max(probs, dim=1)
label = "Hate Speech" if pred.item() == 1 else "Not Hate Speech"
return label, confidence.item()
def show_result(label, score):
st.markdown("### π Prediction Result:")
score_percent = f"{score * 100:.2f}%"
if label == "Hate Speech":
st.error(f"{label} ({score_percent} confident)")
else:
st.success(f"{label} ({score_percent} confident)")
# ------------------------------- Sidebar -------------------------------
with st.sidebar:
st.title("π Navigation")
if st.button("π Project Overview"):
st.session_state.page = "overview"
if st.button("ποΈ Hate Speech Detector"):
st.session_state.page = "detector"
if 'page' not in st.session_state:
st.session_state.page = "overview"
# ------------------------------- Main Page -------------------------------
page = st.session_state.get("page", "overview")
if page == "overview":
st.title("π£οΈ Smart Hate Speech Classifier Using BERT & Whisper")
st.markdown("""
This AI-based project detects hate speech in:
- βοΈ Text Input
- π Audio Files
- π₯ Video Uploads
### π§ Models Used:
- `OpenAI Whisper` for Speech-to-Text
- `HateXplain BERT` for Hate Speech Classification
""")
elif page == "detector":
st.title("ποΈ Hate Speech Detection")
input_mode = st.radio("Choose Input Type", ["Text", "Audio", "Video Upload"])
if input_mode == "Text":
text_input = st.text_area("π Enter your message:")
if st.button("Classify Text"):
if text_input.strip():
label, score = classify_text(text_input)
show_result(label, score)
else:
st.warning("β οΈ Please enter some text.")
elif input_mode == "Audio":
audio_file = st.file_uploader("π€ Upload Audio File:", type=["wav", "mp3"])
if audio_file:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio.write(audio_file.read())
audio_path = temp_audio.name
st.audio(audio_path)
result = whisper_model.transcribe(audio_path)
transcribed = result["text"]
st.success("π Transcribed Text:")
st.info(transcribed)
label, score = classify_text(transcribed)
show_result(label, score)
os.remove(audio_path) # remove temp file to save space
elif input_mode == "Video Upload":
video_file = st.file_uploader("π€ Upload Video File:", type=["mp4", "mov", "avi"])
if video_file:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
temp_video.write(video_file.read())
video_path = temp_video.name
st.video(video_path)
clip = VideoFileClip(video_path)
audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
clip.audio.write_audiofile(audio_path)
result = whisper_model.transcribe(audio_path)
transcribed = result["text"]
st.success("π Transcribed Text:")
st.info(transcribed)
label, score = classify_text(transcribed)
show_result(label, score)
os.remove(video_path)
os.remove(audio_path)
st.markdown("---")
st.caption("Built with β€οΈ using Streamlit, Whisper, and BERT.")
|