Spaces:
Runtime error
Runtime error
| """ | |
| A model worker that executes the model. | |
| """ | |
| import argparse | |
| import base64 | |
| import gc | |
| import json | |
| import os | |
| from typing import List, Optional | |
| import uuid | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import set_seed | |
| import uvicorn | |
| from src.constants import ErrorCode, SERVER_ERROR_MSG | |
| from src.model.model_adapter import ( | |
| load_model, | |
| add_model_args, | |
| get_generate_stream_function, | |
| ) | |
| from src.modules.awq import AWQConfig | |
| from src.modules.exllama import ExllamaConfig | |
| from src.modules.xfastertransformer import XftConfig | |
| from src.modules.gptq import GptqConfig | |
| from src.serve.base_model_worker import BaseModelWorker, app | |
| from src.utils import ( | |
| build_logger, | |
| get_context_length, | |
| str_to_torch_dtype, | |
| ) | |
| worker_id = str(uuid.uuid4())[:8] | |
| logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
| class ModelWorker(BaseModelWorker): | |
| def __init__( | |
| self, | |
| controller_addr: str, | |
| worker_addr: str, | |
| worker_id: str, | |
| model_path: str, | |
| model_names: List[str], | |
| limit_worker_concurrency: int, | |
| no_register: bool, | |
| device: str, | |
| num_gpus: int, | |
| max_gpu_memory: str, | |
| revision: str = None, | |
| dtype: Optional[torch.dtype] = None, | |
| load_8bit: bool = False, | |
| cpu_offloading: bool = False, | |
| gptq_config: Optional[GptqConfig] = None, | |
| awq_config: Optional[AWQConfig] = None, | |
| exllama_config: Optional[ExllamaConfig] = None, | |
| xft_config: Optional[XftConfig] = None, | |
| stream_interval: int = 2, | |
| conv_template: Optional[str] = None, | |
| embed_in_truncate: bool = False, | |
| seed: Optional[int] = None, | |
| debug: bool = False, | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| controller_addr, | |
| worker_addr, | |
| worker_id, | |
| model_path, | |
| model_names, | |
| limit_worker_concurrency, | |
| conv_template=conv_template, | |
| ) | |
| logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...") | |
| self.model, self.tokenizer = load_model( | |
| model_path, | |
| revision=revision, | |
| device=device, | |
| num_gpus=num_gpus, | |
| max_gpu_memory=max_gpu_memory, | |
| dtype=dtype, | |
| load_8bit=load_8bit, | |
| cpu_offloading=cpu_offloading, | |
| gptq_config=gptq_config, | |
| awq_config=awq_config, | |
| exllama_config=exllama_config, | |
| xft_config=xft_config, | |
| debug=debug, | |
| ) | |
| self.device = device | |
| if self.tokenizer.pad_token == None: | |
| self.tokenizer.pad_token = self.tokenizer.eos_token | |
| self.context_len = get_context_length(self.model.config) | |
| self.generate_stream_func = get_generate_stream_function(self.model, model_path) | |
| self.stream_interval = stream_interval | |
| self.embed_in_truncate = embed_in_truncate | |
| self.seed = seed | |
| if not no_register: | |
| self.init_heart_beat() | |
| def generate_stream_gate(self, params): | |
| if self.device == "npu": | |
| import torch_npu | |
| torch_npu.npu.set_device("npu:0") | |
| self.call_ct += 1 | |
| try: | |
| if self.seed is not None: | |
| set_seed(self.seed) | |
| for output in self.generate_stream_func( | |
| self.model, | |
| self.tokenizer, | |
| params, | |
| self.device, | |
| self.context_len, | |
| self.stream_interval, | |
| ): | |
| ret = { | |
| "text": output["text"], | |
| "error_code": 0, | |
| } | |
| if "usage" in output: | |
| ret["usage"] = output["usage"] | |
| if "finish_reason" in output: | |
| ret["finish_reason"] = output["finish_reason"] | |
| if "logprobs" in output: | |
| ret["logprobs"] = output["logprobs"] | |
| yield json.dumps(ret).encode() + b"\0" | |
| except torch.cuda.OutOfMemoryError as e: | |
| ret = { | |
| "text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
| "error_code": ErrorCode.CUDA_OUT_OF_MEMORY, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| except (ValueError, RuntimeError) as e: | |
| ret = { | |
| "text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
| "error_code": ErrorCode.INTERNAL_ERROR, | |
| } | |
| yield json.dumps(ret).encode() + b"\0" | |
| def generate_gate(self, params): | |
| for x in self.generate_stream_gate(params): | |
| pass | |
| return json.loads(x[:-1].decode()) | |
| def __process_embed_chunk(self, input_ids, attention_mask, **model_type_dict): | |
| if model_type_dict.get("is_bert"): | |
| model_output = self.model(input_ids) | |
| if model_type_dict.get("is_robert"): | |
| data = model_output.last_hidden_state | |
| else: | |
| data = model_output[0] | |
| elif model_type_dict.get("is_t5"): | |
| model_output = self.model(input_ids, decoder_input_ids=input_ids) | |
| data = model_output.encoder_last_hidden_state | |
| else: | |
| model_output = self.model(input_ids, output_hidden_states=True) | |
| if model_type_dict.get("is_chatglm"): | |
| data = model_output.hidden_states[-1].transpose(0, 1) | |
| else: | |
| data = model_output.hidden_states[-1] | |
| if hasattr(self.model, "use_cls_pooling") and self.model.use_cls_pooling: | |
| sum_embeddings = data[:, 0] | |
| else: | |
| mask = attention_mask.unsqueeze(-1).expand(data.size()).float() | |
| masked_embeddings = data * mask | |
| sum_embeddings = torch.sum(masked_embeddings, dim=1) | |
| token_num = torch.sum(attention_mask).item() | |
| return sum_embeddings, token_num | |
| def __encode_base64(self, embeddings: torch.Tensor) -> List[str]: | |
| embeddings = embeddings.cpu() | |
| return [ | |
| base64.b64encode(e.numpy().tobytes()).decode("utf-8") for e in embeddings | |
| ] | |
| def get_embeddings(self, params): | |
| self.call_ct += 1 | |
| try: | |
| tokenizer = self.tokenizer | |
| ret = {"embedding": [], "token_num": 0} | |
| model_type_dict = { | |
| "is_llama": "llama" in str(type(self.model)), | |
| "is_t5": "t5" in str(type(self.model)), | |
| "is_chatglm": "chatglm" in str(type(self.model)), | |
| "is_bert": "bert" in str(type(self.model)), | |
| "is_robert": "robert" in str(type(self.model)), | |
| } | |
| if self.embed_in_truncate: | |
| encoding = tokenizer.batch_encode_plus( | |
| params["input"], | |
| padding=True, | |
| truncation="longest_first", | |
| return_tensors="pt", | |
| max_length=self.context_len, | |
| ) | |
| else: | |
| encoding = tokenizer.batch_encode_plus( | |
| params["input"], padding=True, return_tensors="pt" | |
| ) | |
| input_ids = encoding["input_ids"].to(self.device) | |
| attention_mask = input_ids != tokenizer.pad_token_id | |
| base64_encode = params.get("encoding_format", None) | |
| if self.embed_in_truncate: | |
| embedding, token_num = self.__process_embed_chunk( | |
| input_ids, attention_mask, **model_type_dict | |
| ) | |
| if ( | |
| not hasattr(self.model, "use_cls_pooling") | |
| or not self.model.use_cls_pooling | |
| ): | |
| embedding = embedding / token_num | |
| normalized_embeddings = F.normalize(embedding, p=2, dim=1) | |
| ret["token_num"] = token_num | |
| else: | |
| all_embeddings = [] | |
| all_token_num = 0 | |
| for i in range(0, input_ids.size(1), self.context_len): | |
| chunk_input_ids = input_ids[:, i : i + self.context_len] | |
| chunk_attention_mask = attention_mask[:, i : i + self.context_len] | |
| # add cls token and mask to get cls embedding | |
| if ( | |
| hasattr(self.model, "use_cls_pooling") | |
| and self.model.use_cls_pooling | |
| ): | |
| cls_tokens = ( | |
| torch.zeros( | |
| (chunk_input_ids.size(0), 1), | |
| dtype=chunk_input_ids.dtype, | |
| device=chunk_input_ids.device, | |
| ) | |
| + tokenizer.cls_token_id | |
| ) | |
| chunk_input_ids = torch.cat( | |
| [cls_tokens, chunk_input_ids], dim=-1 | |
| ) | |
| mask = torch.ones( | |
| (chunk_attention_mask.size(0), 1), | |
| dtype=chunk_attention_mask.dtype, | |
| device=chunk_attention_mask.device, | |
| ) | |
| chunk_attention_mask = torch.cat( | |
| [mask, chunk_attention_mask], dim=-1 | |
| ) | |
| chunk_embeddings, token_num = self.__process_embed_chunk( | |
| chunk_input_ids, chunk_attention_mask, **model_type_dict | |
| ) | |
| if ( | |
| hasattr(self.model, "use_cls_pooling") | |
| and self.model.use_cls_pooling | |
| ): | |
| all_embeddings.append(chunk_embeddings * token_num) | |
| else: | |
| all_embeddings.append(chunk_embeddings) | |
| all_token_num += token_num | |
| all_embeddings_tensor = torch.stack(all_embeddings) | |
| embedding = torch.sum(all_embeddings_tensor, dim=0) / all_token_num | |
| normalized_embeddings = F.normalize(embedding, p=2, dim=1) | |
| ret["token_num"] = all_token_num | |
| if base64_encode == "base64": | |
| out_embeddings = self.__encode_base64(normalized_embeddings) | |
| else: | |
| out_embeddings = normalized_embeddings.tolist() | |
| ret["embedding"] = out_embeddings | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| if self.device == "xpu": | |
| torch.xpu.empty_cache() | |
| if self.device == "npu": | |
| torch.npu.empty_cache() | |
| except torch.cuda.OutOfMemoryError as e: | |
| ret = { | |
| "text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
| "error_code": ErrorCode.CUDA_OUT_OF_MEMORY, | |
| } | |
| except (ValueError, RuntimeError) as e: | |
| ret = { | |
| "text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
| "error_code": ErrorCode.INTERNAL_ERROR, | |
| } | |
| return ret | |
| def create_model_worker(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--host", type=str, default="localhost") | |
| parser.add_argument("--port", type=int, default=21002) | |
| parser.add_argument("--worker-address", type=str, default="http://localhost:21002") | |
| parser.add_argument( | |
| "--controller-address", type=str, default="http://localhost:21001" | |
| ) | |
| add_model_args(parser) | |
| parser.add_argument( | |
| "--model-names", | |
| type=lambda s: s.split(","), | |
| help="Optional display comma separated names", | |
| ) | |
| parser.add_argument( | |
| "--conv-template", type=str, default=None, help="Conversation prompt template." | |
| ) | |
| parser.add_argument("--embed-in-truncate", action="store_true") | |
| parser.add_argument( | |
| "--limit-worker-concurrency", | |
| type=int, | |
| default=5, | |
| help="Limit the model concurrency to prevent OOM.", | |
| ) | |
| parser.add_argument("--stream-interval", type=int, default=2) | |
| parser.add_argument("--no-register", action="store_true") | |
| parser.add_argument( | |
| "--seed", | |
| type=int, | |
| default=None, | |
| help="Overwrite the random seed for each generation.", | |
| ) | |
| parser.add_argument( | |
| "--debug", type=bool, default=False, help="Print debugging messages" | |
| ) | |
| parser.add_argument( | |
| "--ssl", | |
| action="store_true", | |
| required=False, | |
| default=False, | |
| help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.", | |
| ) | |
| args = parser.parse_args() | |
| logger.info(f"args: {args}") | |
| if args.gpus: | |
| if len(args.gpus.split(",")) < args.num_gpus: | |
| raise ValueError( | |
| f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!" | |
| ) | |
| os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
| gptq_config = GptqConfig( | |
| ckpt=args.gptq_ckpt or args.model_path, | |
| wbits=args.gptq_wbits, | |
| groupsize=args.gptq_groupsize, | |
| act_order=args.gptq_act_order, | |
| ) | |
| awq_config = AWQConfig( | |
| ckpt=args.awq_ckpt or args.model_path, | |
| wbits=args.awq_wbits, | |
| groupsize=args.awq_groupsize, | |
| ) | |
| if args.enable_exllama: | |
| exllama_config = ExllamaConfig( | |
| max_seq_len=args.exllama_max_seq_len, | |
| gpu_split=args.exllama_gpu_split, | |
| cache_8bit=args.exllama_cache_8bit, | |
| ) | |
| else: | |
| exllama_config = None | |
| if args.enable_xft: | |
| xft_config = XftConfig( | |
| max_seq_len=args.xft_max_seq_len, | |
| data_type=args.xft_dtype, | |
| ) | |
| if args.device != "cpu": | |
| print("xFasterTransformer now is only support CPUs. Reset device to CPU") | |
| args.device = "cpu" | |
| else: | |
| xft_config = None | |
| worker = ModelWorker( | |
| args.controller_address, | |
| args.worker_address, | |
| worker_id, | |
| args.model_path, | |
| args.model_names, | |
| args.limit_worker_concurrency, | |
| revision=args.revision, | |
| no_register=args.no_register, | |
| device=args.device, | |
| num_gpus=args.num_gpus, | |
| max_gpu_memory=args.max_gpu_memory, | |
| dtype=str_to_torch_dtype(args.dtype), | |
| load_8bit=args.load_8bit, | |
| cpu_offloading=args.cpu_offloading, | |
| gptq_config=gptq_config, | |
| awq_config=awq_config, | |
| exllama_config=exllama_config, | |
| xft_config=xft_config, | |
| stream_interval=args.stream_interval, | |
| conv_template=args.conv_template, | |
| embed_in_truncate=args.embed_in_truncate, | |
| seed=args.seed, | |
| debug=args.debug, | |
| ) | |
| return args, worker | |
| if __name__ == "__main__": | |
| args, worker = create_model_worker() | |
| if args.ssl: | |
| uvicorn.run( | |
| app, | |
| host=args.host, | |
| port=args.port, | |
| log_level="info", | |
| ssl_keyfile=os.environ["SSL_KEYFILE"], | |
| ssl_certfile=os.environ["SSL_CERTFILE"], | |
| ) | |
| else: | |
| uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |