Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from model import Model | |
| from functools import partial | |
| from bs4 import BeautifulSoup | |
| import requests | |
| examples = [ | |
| ["an astronaut waving the arm on the moon"], | |
| ["a sloth surfing on a wakeboard"], | |
| ["an astronaut walking on a street"], | |
| ["a cute cat walking on grass"], | |
| ["a horse is galloping on a street"], | |
| ["an astronaut is skiing down the hill"], | |
| ["a gorilla walking alone down the street"], | |
| ["a gorilla dancing on times square"], | |
| ["A panda dancing dancing like crazy on Times Square"], | |
| ] | |
| def model_url_list(): | |
| url_list = [] | |
| for i in range(0, 5): | |
| url_list.append(f"https://huggingface.co/models?p={i}&sort=downloads&search=dreambooth") | |
| return url_list | |
| def data_scraping(url_list): | |
| model_list = [] | |
| for url in url_list: | |
| response = requests.get(url) | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| div_class = 'grid grid-cols-1 gap-5 2xl:grid-cols-2' | |
| div = soup.find('div', {'class': div_class}) | |
| for a in div.find_all('a', href=True): | |
| model_list.append(a['href']) | |
| return model_list | |
| model_list = data_scraping(model_url_list()) | |
| for i in range(len(model_list)): | |
| model_list[i] = model_list[i][1:] | |
| best_model_list = [ | |
| "dreamlike-art/dreamlike-photoreal-2.0", | |
| "dreamlike-art/dreamlike-diffusion-1.0", | |
| "runwayml/stable-diffusion-v1-5", | |
| "CompVis/stable-diffusion-v1-4", | |
| "prompthero/openjourney", | |
| ] | |
| model_list = best_model_list + model_list | |
| def create_demo(model: Model): | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| gr.Markdown('## Text2Video-Zero: Video Generation') | |
| with gr.Row(): | |
| gr.HTML( | |
| """ | |
| <div style="text-align: left; auto;"> | |
| <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
| Description: Simply input <b>any textual prompt</b> to generate videos right away and unleash your creativity and imagination! You can also select from the examples below. For performance purposes, our current preview release by default generates only 8 output frames and output 4s videos, but you can increase it from Advanced Options. | |
| </h3> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name = gr.Dropdown( | |
| label="Model", | |
| choices=model_list, | |
| value="dreamlike-art/dreamlike-photoreal-2.0", | |
| ) | |
| prompt = gr.Textbox(label='Prompt') | |
| run_button = gr.Button(label='Run') | |
| with gr.Accordion('Advanced options', open=False): | |
| watermark = gr.Radio(["Picsart AI Research", "Text2Video-Zero", "None"], label="Watermark", value='Picsart AI Research') | |
| video_length = gr.Number(label="Video length", value=8, min=2, precision=0) | |
| chunk_size = gr.Slider(label="Chunk size", minimum=2, maximum=32, value=8, step=1) | |
| motion_field_strength_x = gr.Slider(label='Global Translation $\delta_{x}$', minimum=-20, maximum=20, value=12, step=1) | |
| motion_field_strength_y = gr.Slider(label='Global Translation $\delta_{y}$', minimum=-20, maximum=20, value=12, step=1) | |
| t0 = gr.Slider(label="Timestep t0", minimum=0, maximum=49, value=44, step=1) | |
| t1 = gr.Slider(label="Timestep t1", minimum=0, maximum=49, value=47, step=1) | |
| n_prompt = gr.Textbox(label="Optional Negative Prompt", value='') | |
| with gr.Column(): | |
| result = gr.Video(label="Generated Video") | |
| inputs = [ | |
| prompt, | |
| model_name, | |
| motion_field_strength_x, | |
| motion_field_strength_y, | |
| t0, | |
| t1, | |
| n_prompt, | |
| chunk_size, | |
| video_length, | |
| watermark, | |
| ] | |
| gr.Examples(examples=examples, | |
| inputs=inputs, | |
| outputs=result, | |
| fn=model.process_text2video, | |
| # cache_examples=True, | |
| run_on_click=False, | |
| ) | |
| run_button.click(fn=model.process_text2video, | |
| inputs=inputs, | |
| outputs=result,) | |
| return demo | |