Spaces:
Runtime error
Runtime error
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import cv2 | |
| import torch | |
| import trimesh | |
| import numpy as np | |
| from PIL import Image | |
| import torch.nn.functional as F | |
| from typing import Union, Optional, Tuple, List, Any, Callable | |
| from dataclasses import dataclass | |
| from enum import Enum | |
| from .camera_utils import ( | |
| transform_pos, | |
| get_mv_matrix, | |
| get_orthographic_projection_matrix, | |
| get_perspective_projection_matrix, | |
| ) | |
| try: | |
| from .mesh_utils import load_mesh, save_mesh | |
| except: | |
| print("Bpy IO CAN NOT BE Imported!!!") | |
| try: | |
| from .mesh_inpaint_processor import meshVerticeInpaint # , meshVerticeColor | |
| except: | |
| print("InPaint Function CAN NOT BE Imported!!!") | |
| class RenderMode(Enum): | |
| """Rendering mode enumeration.""" | |
| NORMAL = "normal" | |
| POSITION = "position" | |
| ALPHA = "alpha" | |
| UV_POS = "uvpos" | |
| class ReturnType(Enum): | |
| """Return type enumeration.""" | |
| TENSOR = "th" | |
| NUMPY = "np" | |
| PIL = "pl" | |
| class TextureType(Enum): | |
| """Texture type enumeration.""" | |
| DIFFUSE = "diffuse" | |
| METALLIC_ROUGHNESS = "mr" | |
| NORMAL = "normal" | |
| class RenderConfig: | |
| """Unified rendering configuration.""" | |
| elev: float = 0 | |
| azim: float = 0 | |
| camera_distance: Optional[float] = None | |
| center: Optional[List[float]] = None | |
| resolution: Optional[Union[int, Tuple[int, int]]] = None | |
| bg_color: List[float] = None | |
| return_type: str = "th" | |
| def __post_init__(self): | |
| if self.bg_color is None: | |
| self.bg_color = [1, 1, 1] | |
| class ViewState: | |
| """Camera view state for rendering pipeline.""" | |
| proj_mat: torch.Tensor | |
| mv_mat: torch.Tensor | |
| pos_camera: torch.Tensor | |
| pos_clip: torch.Tensor | |
| resolution: Tuple[int, int] | |
| def stride_from_shape(shape): | |
| """ | |
| Calculate stride values from a given shape for multi-dimensional indexing. | |
| Args: | |
| shape: Tuple or list representing tensor dimensions | |
| Returns: | |
| List of stride values for each dimension | |
| """ | |
| stride = [1] | |
| for x in reversed(shape[1:]): | |
| stride.append(stride[-1] * x) | |
| return list(reversed(stride)) | |
| def scatter_add_nd_with_count(input, count, indices, values, weights=None): | |
| """ | |
| Perform scatter-add operation on N-dimensional tensors with counting. | |
| Args: | |
| input: Input tensor [..., C] with D dimensions + C channels | |
| count: Count tensor [..., 1] with D dimensions | |
| indices: Index tensor [N, D] of type long | |
| values: Value tensor [N, C] to scatter | |
| weights: Optional weight tensor [N, C], defaults to ones if None | |
| Returns: | |
| Tuple of (updated_input, updated_count) tensors | |
| """ | |
| # input: [..., C], D dimension + C channel | |
| # count: [..., 1], D dimension | |
| # indices: [N, D], long | |
| # values: [N, C] | |
| D = indices.shape[-1] | |
| C = input.shape[-1] | |
| size = input.shape[:-1] | |
| stride = stride_from_shape(size) | |
| assert len(size) == D | |
| input = input.view(-1, C) # [HW, C] | |
| count = count.view(-1, 1) | |
| flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1) # [N] | |
| if weights is None: | |
| weights = torch.ones_like(values[..., :1]) | |
| input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values) | |
| count.scatter_add_(0, flatten_indices.unsqueeze(1), weights) | |
| return input.view(*size, C), count.view(*size, 1) | |
| def linear_grid_put_2d(H, W, coords, values, return_count=False): | |
| """ | |
| Place values on a 2D grid using bilinear interpolation. | |
| Args: | |
| H: Grid height | |
| W: Grid width | |
| coords: Coordinate tensor [N, 2] with values in range [0, 1] | |
| values: Value tensor [N, C] to place on grid | |
| return_count: Whether to return count information | |
| Returns: | |
| 2D grid tensor [H, W, C] with interpolated values, optionally with count tensor | |
| """ | |
| # coords: [N, 2], float in [0, 1] | |
| # values: [N, C] | |
| C = values.shape[-1] | |
| indices = coords * torch.tensor([H - 1, W - 1], dtype=torch.float32, device=coords.device) | |
| indices_00 = indices.floor().long() # [N, 2] | |
| indices_00[:, 0].clamp_(0, H - 2) | |
| indices_00[:, 1].clamp_(0, W - 2) | |
| indices_01 = indices_00 + torch.tensor([0, 1], dtype=torch.long, device=indices.device) | |
| indices_10 = indices_00 + torch.tensor([1, 0], dtype=torch.long, device=indices.device) | |
| indices_11 = indices_00 + torch.tensor([1, 1], dtype=torch.long, device=indices.device) | |
| h = indices[..., 0] - indices_00[..., 0].float() | |
| w = indices[..., 1] - indices_00[..., 1].float() | |
| w_00 = (1 - h) * (1 - w) | |
| w_01 = (1 - h) * w | |
| w_10 = h * (1 - w) | |
| w_11 = h * w | |
| result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C] | |
| count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1] | |
| weights = torch.ones_like(values[..., :1]) # [N, 1] | |
| result, count = scatter_add_nd_with_count( | |
| result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1) | |
| ) | |
| result, count = scatter_add_nd_with_count( | |
| result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1) | |
| ) | |
| result, count = scatter_add_nd_with_count( | |
| result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1) | |
| ) | |
| result, count = scatter_add_nd_with_count( | |
| result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1) | |
| ) | |
| if return_count: | |
| return result, count | |
| mask = count.squeeze(-1) > 0 | |
| result[mask] = result[mask] / count[mask].repeat(1, C) | |
| return result | |
| def mipmap_linear_grid_put_2d(H, W, coords, values, min_resolution=128, return_count=False): | |
| """ | |
| Place values on 2D grid using mipmap-based multiresolution interpolation to fill holes. | |
| Args: | |
| H: Grid height | |
| W: Grid width | |
| coords: Coordinate tensor [N, 2] with values in range [0, 1] | |
| values: Value tensor [N, C] to place on grid | |
| min_resolution: Minimum resolution for mipmap levels | |
| return_count: Whether to return count information | |
| Returns: | |
| 2D grid tensor [H, W, C] with filled values, optionally with count tensor | |
| """ | |
| # coords: [N, 2], float in [0, 1] | |
| # values: [N, C] | |
| C = values.shape[-1] | |
| result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C] | |
| count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1] | |
| cur_H, cur_W = H, W | |
| while min(cur_H, cur_W) > min_resolution: | |
| # try to fill the holes | |
| mask = count.squeeze(-1) == 0 | |
| if not mask.any(): | |
| break | |
| cur_result, cur_count = linear_grid_put_2d(cur_H, cur_W, coords, values, return_count=True) | |
| result[mask] = ( | |
| result[mask] | |
| + F.interpolate( | |
| cur_result.permute(2, 0, 1).unsqueeze(0).contiguous(), (H, W), mode="bilinear", align_corners=False | |
| ) | |
| .squeeze(0) | |
| .permute(1, 2, 0) | |
| .contiguous()[mask] | |
| ) | |
| count[mask] = ( | |
| count[mask] | |
| + F.interpolate(cur_count.view(1, 1, cur_H, cur_W), (H, W), mode="bilinear", align_corners=False).view( | |
| H, W, 1 | |
| )[mask] | |
| ) | |
| cur_H //= 2 | |
| cur_W //= 2 | |
| if return_count: | |
| return result, count | |
| mask = count.squeeze(-1) > 0 | |
| result[mask] = result[mask] / count[mask].repeat(1, C) | |
| return result | |
| # ============ Core utility functions for reducing duplication ============ | |
| def _normalize_image_input(image: Union[np.ndarray, torch.Tensor, Image.Image]) -> Union[np.ndarray, torch.Tensor]: | |
| """Normalize image input to consistent format.""" | |
| if isinstance(image, Image.Image): | |
| return np.array(image) / 255.0 | |
| elif isinstance(image, torch.Tensor): | |
| return image.cpu().numpy() if image.is_cuda else image | |
| return image | |
| def _convert_texture_format(tex: Union[np.ndarray, torch.Tensor, Image.Image], | |
| texture_size: Tuple[int, int], device: str, force_set: bool = False) -> torch.Tensor: | |
| """Unified texture format conversion logic.""" | |
| if not force_set: | |
| if isinstance(tex, np.ndarray): | |
| tex = Image.fromarray((tex * 255).astype(np.uint8)) | |
| elif isinstance(tex, torch.Tensor): | |
| tex_np = tex.cpu().numpy() | |
| tex = Image.fromarray((tex_np * 255).astype(np.uint8)) | |
| tex = tex.resize(texture_size).convert("RGB") | |
| tex = np.array(tex) / 255.0 | |
| return torch.from_numpy(tex).to(device).float() | |
| else: | |
| if isinstance(tex, np.ndarray): | |
| tex = torch.from_numpy(tex) | |
| return tex.to(device).float() | |
| def _format_output(image: torch.Tensor, return_type: str) -> Union[torch.Tensor, np.ndarray, Image.Image]: | |
| """Convert output to requested format.""" | |
| if return_type == ReturnType.NUMPY.value: | |
| return image.cpu().numpy() | |
| elif return_type == ReturnType.PIL.value: | |
| img_np = image.cpu().numpy() * 255 | |
| return Image.fromarray(img_np.astype(np.uint8)) | |
| return image | |
| def _ensure_resolution_format(resolution: Optional[Union[int, Tuple[int, int]]], | |
| default: Tuple[int, int]) -> Tuple[int, int]: | |
| """Ensure resolution is in (height, width) format.""" | |
| if resolution is None: | |
| return default | |
| if isinstance(resolution, (int, float)): | |
| return (int(resolution), int(resolution)) | |
| return tuple(resolution) | |
| def _apply_background_mask(content: torch.Tensor, visible_mask: torch.Tensor, | |
| bg_color: List[float], device: str) -> torch.Tensor: | |
| """Apply background color to masked regions.""" | |
| bg_tensor = torch.tensor(bg_color, dtype=torch.float32, device=device) | |
| return content * visible_mask + bg_tensor * (1 - visible_mask) | |
| class MeshRender: | |
| def __init__( | |
| self, | |
| camera_distance=1.45, | |
| camera_type="orth", | |
| default_resolution=1024, | |
| texture_size=1024, | |
| use_antialias=True, | |
| max_mip_level=None, | |
| filter_mode="linear-mipmap-linear", | |
| bake_mode="back_sample", | |
| raster_mode="cr", | |
| shader_type="face", | |
| use_opengl=False, | |
| device="cuda", | |
| ): | |
| """ | |
| Initialize mesh renderer with configurable parameters. | |
| Args: | |
| camera_distance: Distance from camera to object center | |
| camera_type: Type of camera projection ("orth" or "perspective") | |
| default_resolution: Default rendering resolution | |
| texture_size: Size of texture maps | |
| use_antialias: Whether to use antialiasing | |
| max_mip_level: Maximum mipmap level for texture filtering | |
| filter_mode: Texture filtering mode | |
| bake_mode: Texture baking method ("back_sample", "linear", "mip-map") | |
| raster_mode: Rasterization backend ("cr" for custom rasterizer) | |
| shader_type: Shading type ("face" or "vertex") | |
| use_opengl: Whether to use OpenGL backend (deprecated) | |
| device: Computing device ("cuda" or "cpu") | |
| """ | |
| self.device = device | |
| self.set_default_render_resolution(default_resolution) | |
| self.set_default_texture_resolution(texture_size) | |
| self.camera_distance = camera_distance | |
| self.use_antialias = use_antialias | |
| self.max_mip_level = max_mip_level | |
| self.filter_mode = filter_mode | |
| self.bake_angle_thres = 75 | |
| self.set_boundary_unreliable_scale(2) | |
| self.bake_mode = bake_mode | |
| self.shader_type = shader_type | |
| self.raster_mode = raster_mode | |
| if self.raster_mode == "cr": | |
| import custom_rasterizer as cr | |
| self.raster = cr | |
| else: | |
| raise f"No raster named {self.raster_mode}" | |
| if camera_type == "orth": | |
| self.set_orth_scale(1.2) | |
| elif camera_type == "perspective": | |
| self.camera_proj_mat = get_perspective_projection_matrix( | |
| 49.13, self.default_resolution[1] / self.default_resolution[0], 0.01, 100.0 | |
| ) | |
| else: | |
| raise f"No camera type {camera_type}" | |
| # Removed multiprocessing components for single-threaded version | |
| def _create_view_state(self, config: RenderConfig) -> ViewState: | |
| """Create unified view state for rendering pipeline.""" | |
| proj = self.camera_proj_mat | |
| r_mv = get_mv_matrix( | |
| elev=config.elev, | |
| azim=config.azim, | |
| camera_distance=self.camera_distance if config.camera_distance is None else config.camera_distance, | |
| center=config.center, | |
| ) | |
| pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True) | |
| pos_clip = transform_pos(proj, pos_camera) | |
| resolution = _ensure_resolution_format(config.resolution, self.default_resolution) | |
| return ViewState(proj, r_mv, pos_camera, pos_clip, resolution) | |
| def _compute_face_normals(self, triangles: torch.Tensor) -> torch.Tensor: | |
| """Compute face normals from triangle vertices.""" | |
| return F.normalize( | |
| torch.cross( | |
| triangles[:, 1, :] - triangles[:, 0, :], | |
| triangles[:, 2, :] - triangles[:, 0, :], | |
| dim=-1, | |
| ), | |
| dim=-1, | |
| ) | |
| def _get_normals_for_shading(self, view_state: ViewState, use_abs_coor: bool = False) -> torch.Tensor: | |
| """Get normals based on shader type and coordinate system.""" | |
| if use_abs_coor: | |
| mesh_triangles = self.vtx_pos[self.pos_idx[:, :3], :] | |
| else: | |
| pos_camera = view_state.pos_camera[:, :3] / view_state.pos_camera[:, 3:4] | |
| mesh_triangles = pos_camera[self.pos_idx[:, :3], :] | |
| face_normals = self._compute_face_normals(mesh_triangles) | |
| # Common rasterization | |
| rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution) | |
| if self.shader_type == "vertex": | |
| vertex_normals = trimesh.geometry.mean_vertex_normals( | |
| vertex_count=self.vtx_pos.shape[0], | |
| faces=self.pos_idx.cpu(), | |
| face_normals=face_normals.cpu(), | |
| ) | |
| vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous() | |
| normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx) | |
| elif self.shader_type == "face": | |
| tri_ids = rast_out[..., 3] | |
| tri_ids_mask = tri_ids > 0 | |
| tri_ids = ((tri_ids - 1) * tri_ids_mask).long() | |
| normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out) | |
| normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)] | |
| return normal, rast_out | |
| def _unified_render_pipeline(self, config: RenderConfig, mode: RenderMode, **kwargs) -> torch.Tensor: | |
| """Unified rendering pipeline for all render modes.""" | |
| view_state = self._create_view_state(config) | |
| if mode == RenderMode.ALPHA: | |
| rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution) | |
| return rast_out[..., -1:].long() | |
| elif mode == RenderMode.UV_POS: | |
| return self.uv_feature_map(self.vtx_pos * 0.5 + 0.5) | |
| elif mode == RenderMode.NORMAL: | |
| use_abs_coor = kwargs.get('use_abs_coor', False) | |
| normalize_rgb = kwargs.get('normalize_rgb', True) | |
| normal, rast_out = self._get_normals_for_shading(view_state, use_abs_coor) | |
| visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
| result = _apply_background_mask(normal, visible_mask, config.bg_color, self.device) | |
| if normalize_rgb: | |
| result = (result + 1) * 0.5 | |
| if self.use_antialias: | |
| result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx) | |
| return result[0, ...] | |
| elif mode == RenderMode.POSITION: | |
| rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution) | |
| tex_position = 0.5 - self.vtx_pos[:, :3] / self.scale_factor | |
| tex_position = tex_position.contiguous() | |
| position, _ = self.raster_interpolate(tex_position[None, ...], rast_out, self.pos_idx) | |
| visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
| result = _apply_background_mask(position, visible_mask, config.bg_color, self.device) | |
| if self.use_antialias: | |
| result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx) | |
| return result[0, ...] | |
| def set_orth_scale(self, ortho_scale): | |
| """ | |
| Set the orthographic projection scale and update camera projection matrix. | |
| Args: | |
| ortho_scale: Scale factor for orthographic projection | |
| """ | |
| self.ortho_scale = ortho_scale | |
| self.camera_proj_mat = get_orthographic_projection_matrix( | |
| left=-self.ortho_scale * 0.5, | |
| right=self.ortho_scale * 0.5, | |
| bottom=-self.ortho_scale * 0.5, | |
| top=self.ortho_scale * 0.5, | |
| near=0.1, | |
| far=100, | |
| ) | |
| def raster_rasterize(self, pos, tri, resolution, ranges=None, grad_db=True): | |
| """ | |
| Rasterize triangular mesh using the configured rasterization backend. | |
| Args: | |
| pos: Vertex positions in clip space | |
| tri: Triangle indices | |
| resolution: Rendering resolution [height, width] | |
| ranges: Optional rendering ranges (unused in current implementation) | |
| grad_db: Whether to compute gradients (unused in current implementation) | |
| Returns: | |
| Tuple of (rasterization_output, gradient_info) | |
| """ | |
| if self.raster_mode == "cr": | |
| rast_out_db = None | |
| if pos.dim() == 2: | |
| pos = pos.unsqueeze(0) | |
| # 确保pos是float32类型 | |
| if pos.dtype == torch.float64: | |
| pos = pos.to(torch.float32) | |
| # 确保tri是int32类型 | |
| if tri.dtype == torch.int64: | |
| tri = tri.to(torch.int32) | |
| findices, barycentric = self.raster.rasterize(pos, tri, resolution) | |
| rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1) | |
| rast_out = rast_out.unsqueeze(0) | |
| else: | |
| raise f"No raster named {self.raster_mode}" | |
| return rast_out, rast_out_db | |
| def raster_interpolate(self, uv, rast_out, uv_idx): | |
| """ | |
| Interpolate texture coordinates or vertex attributes across rasterized triangles. | |
| Args: | |
| uv: UV coordinates or vertex attributes to interpolate | |
| rast_out: Rasterization output containing barycentric coordinates | |
| uv_idx: UV or vertex indices for triangles | |
| Returns: | |
| Tuple of (interpolated_values, gradient_info) | |
| """ | |
| if self.raster_mode == "cr": | |
| textd = None | |
| barycentric = rast_out[0, ..., :-1] | |
| findices = rast_out[0, ..., -1] | |
| if uv.dim() == 2: | |
| uv = uv.unsqueeze(0) | |
| textc = self.raster.interpolate(uv, findices, barycentric, uv_idx) | |
| else: | |
| raise f"No raster named {self.raster_mode}" | |
| return textc, textd | |
| def raster_antialias(self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0): | |
| """ | |
| Apply antialiasing to rendered colors (currently returns input unchanged). | |
| Args: | |
| color: Input color values | |
| rast: Rasterization output | |
| pos: Vertex positions | |
| tri: Triangle indices | |
| topology_hash: Optional topology hash for optimization | |
| pos_gradient_boost: Gradient boosting factor | |
| Returns: | |
| Antialiased color values | |
| """ | |
| if self.raster_mode == "cr": | |
| color = color | |
| else: | |
| raise f"No raster named {self.raster_mode}" | |
| return color | |
| def set_boundary_unreliable_scale(self, scale): | |
| """ | |
| Set the kernel size for boundary unreliable region detection during texture baking. | |
| Args: | |
| scale: Scale factor relative to 512 resolution baseline | |
| """ | |
| self.bake_unreliable_kernel_size = int( | |
| (scale / 512) * max(self.default_resolution[0], self.default_resolution[1]) | |
| ) | |
| def load_mesh( | |
| self, | |
| mesh, | |
| scale_factor=1.15, | |
| auto_center=True, | |
| ): | |
| """ | |
| Load mesh from file and set up rendering data structures. | |
| Args: | |
| mesh: Path to mesh file or mesh object | |
| scale_factor: Scaling factor for mesh normalization | |
| auto_center: Whether to automatically center the mesh | |
| """ | |
| vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh) | |
| self.set_mesh( | |
| vtx_pos, pos_idx, vtx_uv=vtx_uv, uv_idx=uv_idx, scale_factor=scale_factor, auto_center=auto_center | |
| ) | |
| if texture_data is not None: | |
| self.set_texture(texture_data) | |
| def save_mesh(self, mesh_path, downsample=False): | |
| """ | |
| Save current mesh with textures to file. | |
| Args: | |
| mesh_path: Output file path | |
| downsample: Whether to downsample textures by half | |
| """ | |
| vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh(normalize=False) | |
| texture_data = self.get_texture() | |
| texture_metallic, texture_roughness = self.get_texture_mr() | |
| texture_normal = self.get_texture_normal() | |
| if downsample: | |
| texture_data = cv2.resize(texture_data, (texture_data.shape[1] // 2, texture_data.shape[0] // 2)) | |
| if texture_metallic is not None: | |
| texture_metallic = cv2.resize( | |
| texture_metallic, (texture_metallic.shape[1] // 2, texture_metallic.shape[0] // 2) | |
| ) | |
| if texture_roughness is not None: | |
| texture_roughness = cv2.resize( | |
| texture_roughness, (texture_roughness.shape[1] // 2, texture_roughness.shape[0] // 2) | |
| ) | |
| if texture_normal is not None: | |
| texture_normal = cv2.resize( | |
| texture_normal, (texture_normal.shape[1] // 2, texture_normal.shape[0] // 2) | |
| ) | |
| save_mesh( | |
| mesh_path, | |
| vtx_pos, | |
| pos_idx, | |
| vtx_uv, | |
| uv_idx, | |
| texture_data, | |
| metallic=texture_metallic, | |
| roughness=texture_roughness, | |
| normal=texture_normal, | |
| ) | |
| def set_mesh(self, vtx_pos, pos_idx, vtx_uv=None, uv_idx=None, scale_factor=1.15, auto_center=True): | |
| """ | |
| Set mesh geometry data and perform coordinate transformations. | |
| Args: | |
| vtx_pos: Vertex positions [N, 3] | |
| pos_idx: Triangle vertex indices [F, 3] | |
| vtx_uv: UV coordinates [N, 2], optional | |
| uv_idx: Triangle UV indices [F, 3], optional | |
| scale_factor: Scaling factor for mesh normalization | |
| auto_center: Whether to automatically center and scale the mesh | |
| """ | |
| self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device) | |
| self.pos_idx = torch.from_numpy(pos_idx).to(self.device) | |
| # 确保顶点位置是float32类型 | |
| if self.vtx_pos.dtype == torch.float64: | |
| self.vtx_pos = self.vtx_pos.to(torch.float32) | |
| # 确保索引类型为int32 | |
| if self.pos_idx.dtype == torch.int64: | |
| self.pos_idx = self.pos_idx.to(torch.int32) | |
| if (vtx_uv is not None) and (uv_idx is not None): | |
| self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device) | |
| self.uv_idx = torch.from_numpy(uv_idx).to(self.device) | |
| # 确保UV坐标是float32类型 | |
| if self.vtx_uv.dtype == torch.float64: | |
| self.vtx_uv = self.vtx_uv.to(torch.float32) | |
| # 确保UV索引类型为int32 | |
| if self.uv_idx.dtype == torch.int64: | |
| self.uv_idx = self.uv_idx.to(torch.int32) | |
| else: | |
| self.vtx_uv = None | |
| self.uv_idx = None | |
| self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]] | |
| self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]] | |
| if (vtx_uv is not None) and (uv_idx is not None): | |
| self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1] | |
| pass | |
| if auto_center: | |
| max_bb = (self.vtx_pos - 0).max(0)[0] | |
| min_bb = (self.vtx_pos - 0).min(0)[0] | |
| center = (max_bb + min_bb) / 2 | |
| scale = torch.norm(self.vtx_pos - center, dim=1).max() * 2.0 | |
| self.vtx_pos = (self.vtx_pos - center) * (scale_factor / float(scale)) | |
| self.scale_factor = scale_factor | |
| self.mesh_normalize_scale_factor = scale_factor / float(scale) | |
| self.mesh_normalize_scale_center = center.unsqueeze(0).cpu().numpy() | |
| else: | |
| self.scale_factor = 1.0 | |
| self.mesh_normalize_scale_factor = 1.0 | |
| self.mesh_normalize_scale_center = np.array([[0, 0, 0]]) | |
| if uv_idx is not None: | |
| self.extract_textiles() | |
| def _set_texture_unified(self, tex: Union[np.ndarray, torch.Tensor, Image.Image], | |
| texture_type: TextureType, force_set: bool = False): | |
| """Unified texture setting method.""" | |
| converted_tex = _convert_texture_format(tex, self.texture_size, self.device, force_set) | |
| if texture_type == TextureType.DIFFUSE: | |
| self.tex = converted_tex | |
| elif texture_type == TextureType.METALLIC_ROUGHNESS: | |
| self.tex_mr = converted_tex | |
| elif texture_type == TextureType.NORMAL: | |
| self.tex_normalMap = converted_tex | |
| def set_texture(self, tex, force_set=False): | |
| """Set the main diffuse texture for the mesh.""" | |
| self._set_texture_unified(tex, TextureType.DIFFUSE, force_set) | |
| def set_texture_mr(self, mr, force_set=False): | |
| """Set metallic-roughness texture for PBR rendering.""" | |
| self._set_texture_unified(mr, TextureType.METALLIC_ROUGHNESS, force_set) | |
| def set_texture_normal(self, normal, force_set=False): | |
| """Set normal map texture for surface detail.""" | |
| self._set_texture_unified(normal, TextureType.NORMAL, force_set) | |
| def set_default_render_resolution(self, default_resolution): | |
| """ | |
| Set the default resolution for rendering operations. | |
| Args: | |
| default_resolution: Resolution as int (square) or tuple (height, width) | |
| """ | |
| if isinstance(default_resolution, int): | |
| default_resolution = (default_resolution, default_resolution) | |
| self.default_resolution = default_resolution | |
| def set_default_texture_resolution(self, texture_size): | |
| """ | |
| Set the default texture resolution for UV mapping operations. | |
| Args: | |
| texture_size: Texture size as int (square) or tuple (height, width) | |
| """ | |
| if isinstance(texture_size, int): | |
| texture_size = (texture_size, texture_size) | |
| self.texture_size = texture_size | |
| def get_face_num(self): | |
| """ | |
| Get the number of triangular faces in the mesh. | |
| Returns: | |
| Number of faces as integer | |
| """ | |
| return self.pos_idx.shape[0] | |
| def get_vertex_num(self): | |
| """ | |
| Get the number of vertices in the mesh. | |
| Returns: | |
| Number of vertices as integer | |
| """ | |
| return self.vtx_pos.shape[0] | |
| def get_face_areas(self, from_one_index=False): | |
| """ | |
| Calculate the area of each triangular face in the mesh. | |
| Args: | |
| from_one_index: If True, insert zero at beginning for 1-indexed face IDs | |
| Returns: | |
| Numpy array of face areas | |
| """ | |
| v0 = self.vtx_pos[self.pos_idx[:, 0], :] | |
| v1 = self.vtx_pos[self.pos_idx[:, 1], :] | |
| v2 = self.vtx_pos[self.pos_idx[:, 2], :] | |
| # 计算两个边向量 | |
| edge1 = v1 - v0 | |
| edge2 = v2 - v0 | |
| # 计算叉积的模长的一半即为面积 | |
| areas = torch.norm(torch.cross(edge1, edge2, dim=-1), dim=-1) * 0.5 | |
| areas = areas.cpu().numpy() | |
| if from_one_index: | |
| # 在数组前面插入一个0,因为三角片索引是从1开始的 | |
| areas = np.insert(areas, 0, 0) | |
| return areas | |
| def get_mesh(self, normalize=True): | |
| """ | |
| Get mesh geometry with optional coordinate denormalization. | |
| Args: | |
| normalize: Whether to keep normalized coordinates (True) or restore original scale (False) | |
| Returns: | |
| Tuple of (vertex_positions, face_indices, uv_coordinates, uv_indices) | |
| """ | |
| vtx_pos = self.vtx_pos.cpu().numpy() | |
| pos_idx = self.pos_idx.cpu().numpy() | |
| vtx_uv = self.vtx_uv.cpu().numpy() | |
| uv_idx = self.uv_idx.cpu().numpy() | |
| # 坐标变换的逆变换 | |
| if not normalize: | |
| vtx_pos = vtx_pos / self.mesh_normalize_scale_factor | |
| vtx_pos = vtx_pos + self.mesh_normalize_scale_center | |
| vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]] | |
| vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]] | |
| vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1] | |
| return vtx_pos, pos_idx, vtx_uv, uv_idx | |
| def get_texture(self): | |
| """ | |
| Get the current diffuse texture as numpy array. | |
| Returns: | |
| Texture as numpy array in range [0, 1] | |
| """ | |
| return self.tex.cpu().numpy() | |
| def get_texture_mr(self): | |
| """ | |
| Get metallic and roughness textures as separate channels. | |
| Returns: | |
| Tuple of (metallic_texture, roughness_texture) as numpy arrays, or (None, None) if not set | |
| """ | |
| metallic, roughness = None, None | |
| if hasattr(self, "tex_mr"): | |
| mr = self.tex_mr.cpu().numpy() | |
| metallic = np.repeat(mr[:, :, 0:1], repeats=3, axis=2) | |
| roughness = np.repeat(mr[:, :, 1:2], repeats=3, axis=2) | |
| return metallic, roughness | |
| def get_texture_normal(self): | |
| """ | |
| Get the normal map texture as numpy array. | |
| Returns: | |
| Normal map as numpy array, or None if not set | |
| """ | |
| normal = None | |
| if hasattr(self, "tex_normalMap"): | |
| normal = self.tex_normalMap.cpu().numpy() | |
| return normal | |
| def to(self, device): | |
| """ | |
| Move all tensor attributes to the specified device. | |
| Args: | |
| device: Target device ("cuda", "cpu", etc.) | |
| """ | |
| self.device = device | |
| for attr_name in dir(self): | |
| attr_value = getattr(self, attr_name) | |
| if isinstance(attr_value, torch.Tensor): | |
| setattr(self, attr_name, attr_value.to(self.device)) | |
| def color_rgb_to_srgb(self, image): | |
| """ | |
| Convert RGB color values to sRGB color space using gamma correction. | |
| Args: | |
| image: Input image as PIL Image, numpy array, or torch tensor | |
| Returns: | |
| sRGB corrected image in same format as input | |
| """ | |
| if isinstance(image, Image.Image): | |
| image_rgb = torch.tesnor(np.array(image) / 255.0).float().to(self.device) | |
| elif isinstance(image, np.ndarray): | |
| image_rgb = torch.tensor(image).float() | |
| else: | |
| image_rgb = image.to(self.device) | |
| image_srgb = torch.where( | |
| image_rgb <= 0.0031308, 12.92 * image_rgb, 1.055 * torch.pow(image_rgb, 1 / 2.4) - 0.055 | |
| ) | |
| if isinstance(image, Image.Image): | |
| image_srgb = Image.fromarray((image_srgb.cpu().numpy() * 255).astype(np.uint8)) | |
| elif isinstance(image, np.ndarray): | |
| image_srgb = image_srgb.cpu().numpy() | |
| else: | |
| image_srgb = image_srgb.to(image.device) | |
| return image_srgb | |
| def extract_textiles(self): | |
| """ | |
| Extract texture-space position and normal information by rasterizing | |
| the mesh in UV coordinate space. Creates texture-space geometry mappings. | |
| """ | |
| vnum = self.vtx_uv.shape[0] | |
| vtx_uv = torch.cat( | |
| (self.vtx_uv, torch.zeros_like(self.vtx_uv[:, 0:1]), torch.ones_like(self.vtx_uv[:, 0:1])), axis=1 | |
| ) | |
| vtx_uv = vtx_uv.view(1, vnum, 4) * 2 - 1 | |
| rast_out, rast_out_db = self.raster_rasterize(vtx_uv, self.uv_idx, resolution=self.texture_size) | |
| position, _ = self.raster_interpolate(self.vtx_pos, rast_out, self.pos_idx) | |
| v0 = self.vtx_pos[self.pos_idx[:, 0], :] | |
| v1 = self.vtx_pos[self.pos_idx[:, 1], :] | |
| v2 = self.vtx_pos[self.pos_idx[:, 2], :] | |
| face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1) | |
| vertex_normals = trimesh.geometry.mean_vertex_normals( | |
| vertex_count=self.vtx_pos.shape[0], | |
| faces=self.pos_idx.cpu(), | |
| face_normals=face_normals.cpu(), | |
| ) | |
| vertex_normals = torch.from_numpy(vertex_normals).to(self.vtx_pos).contiguous() | |
| position_normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx) | |
| visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ..., 0] | |
| position = position[0] | |
| position_normal = position_normal[0] | |
| tri_ids = rast_out[0, ..., 3] | |
| tri_ids_mask = tri_ids > 0 | |
| tri_ids = ((tri_ids - 1) * tri_ids_mask).long() | |
| position_normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[ | |
| tri_ids[tri_ids_mask].view(-1) | |
| ] | |
| row = torch.arange(position.shape[0]).to(visible_mask.device) | |
| col = torch.arange(position.shape[1]).to(visible_mask.device) | |
| grid_i, grid_j = torch.meshgrid(row, col, indexing="ij") | |
| mask = visible_mask.reshape(-1) > 0 | |
| position = position.reshape(-1, 3)[mask] | |
| position_normal = position_normal.reshape(-1, 3)[mask] | |
| position = torch.cat((position, torch.ones_like(position[:, :1])), axis=-1) | |
| grid = torch.stack((grid_i, grid_j), -1).reshape(-1, 2)[mask] | |
| texture_indices = ( | |
| torch.ones(self.texture_size[0], self.texture_size[1], device=self.device, dtype=torch.long) * -1 | |
| ) | |
| texture_indices.view(-1)[grid[:, 0] * self.texture_size[1] + grid[:, 1]] = torch.arange(grid.shape[0]).to( | |
| device=self.device, dtype=torch.long | |
| ) | |
| self.tex_position = position | |
| self.tex_normal = position_normal | |
| self.tex_grid = grid | |
| self.texture_indices = texture_indices | |
| def render_normal(self, elev, azim, camera_distance=None, center=None, resolution=None, | |
| bg_color=[1, 1, 1], use_abs_coor=False, normalize_rgb=True, return_type="th"): | |
| """Render surface normals of the mesh from specified viewpoint.""" | |
| config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type) | |
| image = self._unified_render_pipeline(config, RenderMode.NORMAL, | |
| use_abs_coor=use_abs_coor, normalize_rgb=normalize_rgb) | |
| return _format_output(image, return_type) | |
| def convert_normal_map(self, image): | |
| """ | |
| Convert normal map from standard format to renderer's coordinate system. | |
| Applies coordinate transformations for proper normal interpretation. | |
| Args: | |
| image: Input normal map as PIL Image or numpy array | |
| Returns: | |
| Converted normal map as PIL Image | |
| """ | |
| # blue is front, red is left, green is top | |
| if isinstance(image, Image.Image): | |
| image = np.array(image) | |
| mask = (image == [255, 255, 255]).all(axis=-1) | |
| image = (image / 255.0) * 2.0 - 1.0 | |
| image[..., [1]] = -image[..., [1]] | |
| image[..., [1, 2]] = image[..., [2, 1]] | |
| image[..., [0]] = -image[..., [0]] | |
| image = (image + 1.0) * 0.5 | |
| image = (image * 255).astype(np.uint8) | |
| image[mask] = [127, 127, 255] | |
| return Image.fromarray(image) | |
| def render_position(self, elev, azim, camera_distance=None, center=None, resolution=None, | |
| bg_color=[1, 1, 1], return_type="th"): | |
| """Render world-space positions of visible mesh surface points.""" | |
| config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type) | |
| image = self._unified_render_pipeline(config, RenderMode.POSITION) | |
| if return_type == ReturnType.PIL.value: | |
| image = image.squeeze(-1).cpu().numpy() * 255 | |
| return Image.fromarray(image.astype(np.uint8)) | |
| return _format_output(image, return_type) | |
| def render_uvpos(self, return_type="th"): | |
| """Render vertex positions mapped to UV texture space.""" | |
| config = RenderConfig(return_type=return_type) | |
| image = self._unified_render_pipeline(config, RenderMode.UV_POS) | |
| return _format_output(image, return_type) | |
| def render_alpha(self, elev, azim, camera_distance=None, center=None, resolution=None, return_type="th"): | |
| """Render binary alpha mask indicating visible mesh regions.""" | |
| config = RenderConfig(elev, azim, camera_distance, center, resolution, return_type=return_type) | |
| image = self._unified_render_pipeline(config, RenderMode.ALPHA) | |
| if return_type == ReturnType.PIL.value: | |
| raise Exception("PIL format not supported for alpha rendering") | |
| return _format_output(image, return_type) | |
| def uv_feature_map(self, vert_feat, bg=None): | |
| """ | |
| Map per-vertex features to UV texture space using mesh topology. | |
| Args: | |
| vert_feat: Per-vertex feature tensor [N, C] | |
| bg: Background value for unmapped regions (optional) | |
| Returns: | |
| Feature map in UV texture space [H, W, C] | |
| """ | |
| vtx_uv = self.vtx_uv * 2 - 1.0 | |
| vtx_uv = torch.cat([vtx_uv, torch.zeros_like(self.vtx_uv)], dim=1).unsqueeze(0) | |
| vtx_uv[..., -1] = 1 | |
| uv_idx = self.uv_idx | |
| rast_out, rast_out_db = self.raster_rasterize(vtx_uv, uv_idx, resolution=self.texture_size) | |
| feat_map, _ = self.raster_interpolate(vert_feat[None, ...], rast_out, uv_idx) | |
| feat_map = feat_map[0, ...] | |
| if bg is not None: | |
| visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...] | |
| feat_map[visible_mask == 0] = bg | |
| return feat_map | |
| def render_sketch_from_geometry(self, normal_image, depth_image): | |
| """ | |
| Generate sketch-style edge image from rendered normal and depth maps. | |
| Args: | |
| normal_image: Rendered normal map tensor | |
| depth_image: Rendered depth map tensor | |
| Returns: | |
| Binary edge sketch image as tensor | |
| """ | |
| normal_image_np = normal_image.cpu().numpy() | |
| depth_image_np = depth_image.cpu().numpy() | |
| normal_image_np = (normal_image_np * 255).astype(np.uint8) | |
| depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
| normal_image_np = cv2.cvtColor(normal_image_np, cv2.COLOR_RGB2GRAY) | |
| normal_edges = cv2.Canny(normal_image_np, 80, 150) | |
| depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
| combined_edges = np.maximum(normal_edges, depth_edges) | |
| sketch_image = torch.from_numpy(combined_edges).to(normal_image.device).float() / 255.0 | |
| sketch_image = sketch_image.unsqueeze(-1) | |
| return sketch_image | |
| def render_sketch_from_depth(self, depth_image): | |
| """ | |
| Generate sketch-style edge image from depth map using edge detection. | |
| Args: | |
| depth_image: Input depth map tensor | |
| Returns: | |
| Binary edge sketch image as tensor | |
| """ | |
| depth_image_np = depth_image.cpu().numpy() | |
| depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
| depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
| combined_edges = depth_edges | |
| sketch_image = torch.from_numpy(combined_edges).to(depth_image.device).float() / 255.0 | |
| sketch_image = sketch_image.unsqueeze(-1) | |
| return sketch_image | |
| def back_project(self, image, elev, azim, camera_distance=None, center=None, method=None): | |
| """ | |
| Back-project a rendered image onto the mesh's UV texture space. | |
| Handles visibility, viewing angle, and boundary detection for texture baking. | |
| Args: | |
| image: Input image to back-project (PIL Image, numpy array, or tensor) | |
| elev: Camera elevation angle in degrees used for rendering | |
| azim: Camera azimuth angle in degrees used for rendering | |
| camera_distance: Camera distance (uses default if None) | |
| center: Camera focus center (uses origin if None) | |
| method: Back-projection method ("linear", "mip-map", "back_sample", uses default if None) | |
| Returns: | |
| Tuple of (texture, cosine_map, boundary_map) tensors in UV space | |
| """ | |
| if isinstance(image, Image.Image): | |
| image = torch.tensor(np.array(image) / 255.0) | |
| elif isinstance(image, np.ndarray): | |
| image = torch.tensor(image) | |
| if image.dim() == 2: | |
| image = image.unsqueeze(-1) | |
| image = image.float().to(self.device) | |
| resolution = image.shape[:2] | |
| channel = image.shape[-1] | |
| texture = torch.zeros(self.texture_size + (channel,)).to(self.device) | |
| cos_map = torch.zeros(self.texture_size + (1,)).to(self.device) | |
| proj = self.camera_proj_mat | |
| r_mv = get_mv_matrix( | |
| elev=elev, | |
| azim=azim, | |
| camera_distance=self.camera_distance if camera_distance is None else camera_distance, | |
| center=center, | |
| ) | |
| pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True) | |
| pos_clip = transform_pos(proj, pos_camera) | |
| pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4] | |
| v0 = pos_camera[self.pos_idx[:, 0], :] | |
| v1 = pos_camera[self.pos_idx[:, 1], :] | |
| v2 = pos_camera[self.pos_idx[:, 2], :] | |
| face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1) | |
| tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous() | |
| rast_out, rast_out_db = self.raster_rasterize(pos_clip, self.pos_idx, resolution=resolution) | |
| visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...] | |
| if self.shader_type == "vertex": | |
| vertex_normals = trimesh.geometry.mean_vertex_normals( | |
| vertex_count=self.vtx_pos.shape[0], | |
| faces=self.pos_idx.cpu(), | |
| face_normals=face_normals.cpu(), | |
| ) | |
| vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous() | |
| normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx) | |
| elif self.shader_type == "face": | |
| tri_ids = rast_out[..., 3] | |
| tri_ids_mask = tri_ids > 0 | |
| tri_ids = ((tri_ids - 1) * tri_ids_mask).long() | |
| normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out) | |
| normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)] | |
| normal = normal[0, ...] | |
| uv, _ = self.raster_interpolate(self.vtx_uv[None, ...], rast_out, self.uv_idx) | |
| depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx) | |
| depth = depth[0, ...] | |
| depth_max, depth_min = depth[visible_mask > 0].max(), depth[visible_mask > 0].min() | |
| depth_normalized = (depth - depth_min) / (depth_max - depth_min) | |
| depth_image = depth_normalized * visible_mask # Mask out background. | |
| sketch_image = self.render_sketch_from_depth(depth_image) | |
| lookat = torch.tensor([[0, 0, -1]], device=self.device) | |
| cos_image = torch.nn.functional.cosine_similarity(lookat, normal.view(-1, 3)) | |
| cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1) | |
| cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi) | |
| cos_image[cos_image < cos_thres] = 0 | |
| # shrink | |
| if self.bake_unreliable_kernel_size > 0: | |
| kernel_size = self.bake_unreliable_kernel_size * 2 + 1 | |
| kernel = torch.ones((1, 1, kernel_size, kernel_size), dtype=torch.float32).to(sketch_image.device) | |
| visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float() | |
| visible_mask = F.conv2d(1.0 - visible_mask, kernel, padding=kernel_size // 2) | |
| visible_mask = 1.0 - (visible_mask > 0).float() # 二值化 | |
| visible_mask = visible_mask.squeeze(0).permute(1, 2, 0) | |
| sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0) | |
| sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2) | |
| sketch_image = (sketch_image > 0).float() # 二值化 | |
| sketch_image = sketch_image.squeeze(0).permute(1, 2, 0) | |
| visible_mask = visible_mask * (sketch_image < 0.5) | |
| cos_image[visible_mask == 0] = 0 | |
| method = self.bake_mode if method is None else method | |
| if method == "linear": | |
| proj_mask = (visible_mask != 0).view(-1) | |
| uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask] | |
| image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask] | |
| cos_image = cos_image.contiguous().view(-1, 1)[proj_mask] | |
| sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask] | |
| texture = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image) | |
| cos_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image) | |
| boundary_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], sketch_image) | |
| elif method == "mip-map": | |
| proj_mask = (visible_mask != 0).view(-1) | |
| uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask] | |
| image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask] | |
| cos_image = cos_image.contiguous().view(-1, 1)[proj_mask] | |
| texture = mipmap_linear_grid_put_2d( | |
| self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image, min_resolution=128 | |
| ) | |
| cos_map = mipmap_linear_grid_put_2d( | |
| self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image, min_resolution=256 | |
| ) | |
| if self.vtx_map is not None: | |
| vertex_normals = vertex_normals[self.vtx_map, :] | |
| normal_map = self.uv_feature_map(vertex_normals) | |
| cos_map_uv = torch.nn.functional.cosine_similarity(lookat, normal_map.view(-1, 3)) # .abs() | |
| cos_map_uv = cos_map_uv.view(1, 1, normal_map.shape[0], normal_map.shape[1]) | |
| cos_map_uv = torch.nn.functional.max_pool2d(cos_map_uv, kernel_size=3, stride=1, padding=1) | |
| cos_map_uv = cos_map_uv.reshape(self.texture_size[0], self.texture_size[1], 1) | |
| cos_map_uv[cos_map_uv < cos_thres] = 0 | |
| # cos_map = torch.min(cos_map, cos_map_uv) | |
| cos_map[cos_map_uv < cos_thres] = 0 | |
| elif method == "back_sample": | |
| img_proj = torch.from_numpy( | |
| np.array(((proj[0, 0], 0, 0, 0), (0, proj[1, 1], 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))) | |
| ).to(self.tex_position) | |
| w2c = torch.from_numpy(r_mv).to(self.tex_position) | |
| v_proj = self.tex_position @ w2c.T @ img_proj | |
| inner_mask = (v_proj[:, 0] <= 1.0) & (v_proj[:, 0] >= -1.0) & (v_proj[:, 1] <= 1.0) & (v_proj[:, 1] >= -1.0) | |
| inner_valid_idx = torch.where(inner_mask)[0].long() | |
| img_x = torch.clamp( | |
| ((v_proj[:, 0].clamp(-1, 1) * 0.5 + 0.5) * (resolution[0])).long(), 0, resolution[0] - 1 | |
| ) | |
| img_y = torch.clamp( | |
| ((v_proj[:, 1].clamp(-1, 1) * 0.5 + 0.5) * (resolution[1])).long(), 0, resolution[1] - 1 | |
| ) | |
| indices = img_y * resolution[0] + img_x | |
| sampled_z = depth.reshape(-1)[indices] | |
| sampled_m = visible_mask.reshape(-1)[indices] | |
| v_z = v_proj[:, 2] | |
| sampled_w = cos_image.reshape(-1)[indices] | |
| depth_thres = 3e-3 | |
| # valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) * (sampled_m*sampled_w>0))[0] | |
| valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) & (sampled_m * sampled_w > 0))[0] | |
| intersection_mask = torch.isin(valid_idx, inner_valid_idx) | |
| valid_idx = valid_idx[intersection_mask].to(inner_valid_idx) | |
| indices = indices[valid_idx] | |
| sampled_b = sketch_image.reshape(-1)[indices] | |
| sampled_w = sampled_w[valid_idx] | |
| # bilinear sampling rgb | |
| wx = ((v_proj[:, 0] * 0.5 + 0.5) * resolution[0] - img_x)[valid_idx].reshape(-1, 1) | |
| wy = ((v_proj[:, 1] * 0.5 + 0.5) * resolution[1] - img_y)[valid_idx].reshape(-1, 1) | |
| img_x = img_x[valid_idx] | |
| img_y = img_y[valid_idx] | |
| img_x_r = torch.clamp(img_x + 1, 0, resolution[0] - 1) | |
| img_y_r = torch.clamp(img_y + 1, 0, resolution[1] - 1) | |
| indices_lr = img_y * resolution[0] + img_x_r | |
| indices_rl = img_y_r * resolution[0] + img_x | |
| indices_rr = img_y_r * resolution[0] + img_x_r | |
| rgb = image.reshape(-1, channel) | |
| sampled_rgb = (rgb[indices] * (1 - wx) + rgb[indices_lr] * wx) * (1 - wy) + ( | |
| rgb[indices_rl] * (1 - wx) + rgb[indices_rr] * wx | |
| ) * wy | |
| # return sampled_rgb, sampled_w, sampled_b, valid_idx | |
| texture = torch.zeros(self.texture_size[0], self.texture_size[1], channel, device=self.device).reshape( | |
| -1, channel | |
| ) | |
| cos_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1) | |
| boundary_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1) | |
| valid_tex_indices = self.tex_grid[valid_idx, 0] * self.texture_size[1] + self.tex_grid[valid_idx, 1] | |
| texture[valid_tex_indices, :] = sampled_rgb | |
| cos_map[valid_tex_indices] = sampled_w | |
| boundary_map[valid_tex_indices] = sampled_b | |
| texture = texture.view(self.texture_size[0], self.texture_size[1], channel) | |
| cos_map = cos_map.view(self.texture_size[0], self.texture_size[1], 1) | |
| # texture = torch.clamp(texture,0,1) | |
| else: | |
| raise f"No bake mode {method}" | |
| return texture, cos_map, boundary_map | |
| def bake_texture(self, colors, elevs, azims, camera_distance=None, center=None, exp=6, weights=None): | |
| """ | |
| Bake multiple view images into a single UV texture using weighted blending. | |
| Args: | |
| colors: List of input images (tensors, numpy arrays, or PIL Images) | |
| elevs: List of elevation angles for each view | |
| azims: List of azimuth angles for each view | |
| camera_distance: Camera distance (uses default if None) | |
| center: Camera focus center (uses origin if None) | |
| exp: Exponent for cosine weighting (higher values favor front-facing views) | |
| weights: Optional per-view weights (defaults to 1.0 for all views) | |
| Returns: | |
| Tuple of (merged_texture, trust_map) tensors in UV space | |
| """ | |
| if isinstance(colors, torch.Tensor): | |
| colors = [colors[i, ...].float().permute(1, 2, 0) for i in range(colors.shape[0])] | |
| else: | |
| for i in range(len(colors)): | |
| if isinstance(colors[i], Image.Image): | |
| colors[i] = torch.tensor(np.array(colors[i]) / 255.0, device=self.device).float() | |
| if weights is None: | |
| weights = [1.0 for _ in range(len(colors))] | |
| textures = [] | |
| cos_maps = [] | |
| for color, elev, azim, weight in zip(colors, elevs, azims, weights): | |
| texture, cos_map, _ = self.back_project(color, elev, azim, camera_distance, center) | |
| cos_map = weight * (cos_map**exp) | |
| textures.append(texture) | |
| cos_maps.append(cos_map) | |
| texture_merge, trust_map_merge = self.fast_bake_texture(textures, cos_maps) | |
| return texture_merge, trust_map_merge | |
| def fast_bake_texture(self, textures, cos_maps): | |
| """ | |
| Efficiently merge multiple textures using cosine-weighted blending. | |
| Optimizes by skipping views that don't contribute new information. | |
| Args: | |
| textures: List of texture tensors to merge | |
| cos_maps: List of corresponding cosine weight maps | |
| Returns: | |
| Tuple of (merged_texture, valid_mask) tensors | |
| """ | |
| channel = textures[0].shape[-1] | |
| texture_merge = torch.zeros(self.texture_size + (channel,)).to(self.device) | |
| trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device) | |
| for texture, cos_map in zip(textures, cos_maps): | |
| view_sum = (cos_map > 0).sum() | |
| painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum() | |
| if painted_sum / view_sum > 0.99: | |
| continue | |
| texture_merge += texture * cos_map | |
| trust_map_merge += cos_map | |
| texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8) | |
| return texture_merge, trust_map_merge > 1e-8 | |
| def uv_inpaint(self, texture, mask, vertex_inpaint=True, method="NS", return_float=False): | |
| """ | |
| Inpaint missing regions in UV texture using mesh-aware and traditional methods. | |
| Args: | |
| texture: Input texture as tensor, numpy array, or PIL Image | |
| mask: Binary mask indicating regions to inpaint (1 = keep, 0 = inpaint) | |
| vertex_inpaint: Whether to use mesh vertex connectivity for inpainting | |
| method: Inpainting method ("NS" for Navier-Stokes) | |
| return_float: Whether to return float values (False returns uint8) | |
| Returns: | |
| Inpainted texture as numpy array | |
| """ | |
| if isinstance(texture, torch.Tensor): | |
| texture_np = texture.cpu().numpy() | |
| elif isinstance(texture, np.ndarray): | |
| texture_np = texture | |
| elif isinstance(texture, Image.Image): | |
| texture_np = np.array(texture) / 255.0 | |
| if isinstance(mask, torch.Tensor): | |
| mask = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8) | |
| if vertex_inpaint: | |
| vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh() | |
| texture_np, mask = meshVerticeInpaint(texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx) | |
| if method == "NS": | |
| texture_np = cv2.inpaint((texture_np * 255).astype(np.uint8), 255 - mask, 3, cv2.INPAINT_NS) | |
| assert return_float == False | |
| return texture_np | |