Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
| # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import diffusers | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from diffusers import FluxPipeline | |
| from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from einops import repeat | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from dreamo.transformer import flux_transformer_forward | |
| from dreamo.utils import convert_flux_lora_to_diffusers | |
| diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.forward = flux_transformer_forward | |
| def get_task_embedding_idx(task): | |
| return 0 | |
| class DreamOPipeline(FluxPipeline): | |
| def __init__(self, scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer): | |
| super().__init__(scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer) | |
| self.t5_embedding = nn.Embedding(10, 4096) | |
| self.task_embedding = nn.Embedding(2, 3072) | |
| self.idx_embedding = nn.Embedding(10, 3072) | |
| def load_dreamo_model(self, device, use_turbo=True, version='v1.1'): | |
| # download models and load file | |
| hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo.safetensors', local_dir='models') | |
| hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_cfg_distill.safetensors', local_dir='models') | |
| if version == 'v1': | |
| hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_quality_lora_pos.safetensors', | |
| local_dir='models') | |
| hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_quality_lora_neg.safetensors', | |
| local_dir='models') | |
| quality_lora_pos = load_file('models/dreamo_quality_lora_pos.safetensors') | |
| quality_lora_neg = load_file('models/dreamo_quality_lora_neg.safetensors') | |
| elif version == 'v1.1': | |
| hf_hub_download(repo_id='ByteDance/DreamO', filename='v1.1/dreamo_sft_lora.safetensors', local_dir='models') | |
| hf_hub_download(repo_id='ByteDance/DreamO', filename='v1.1/dreamo_dpo_lora.safetensors', local_dir='models') | |
| sft_lora = load_file('models/v1.1/dreamo_sft_lora.safetensors') | |
| dpo_lora = load_file('models/v1.1/dreamo_dpo_lora.safetensors') | |
| else: | |
| raise ValueError(f'there is no {version}') | |
| dreamo_lora = load_file('models/dreamo.safetensors') | |
| cfg_distill_lora = load_file('models/dreamo_cfg_distill.safetensors') | |
| # load embedding | |
| self.t5_embedding.weight.data = dreamo_lora.pop('dreamo_t5_embedding.weight')[-10:] | |
| self.task_embedding.weight.data = dreamo_lora.pop('dreamo_task_embedding.weight') | |
| self.idx_embedding.weight.data = dreamo_lora.pop('dreamo_idx_embedding.weight') | |
| self._prepare_t5() | |
| # main lora | |
| dreamo_diffuser_lora = convert_flux_lora_to_diffusers(dreamo_lora) | |
| adapter_names = ['dreamo'] | |
| adapter_weights = [1] | |
| self.load_lora_weights(dreamo_diffuser_lora, adapter_name='dreamo') | |
| # cfg lora to avoid true image cfg | |
| cfg_diffuser_lora = convert_flux_lora_to_diffusers(cfg_distill_lora) | |
| self.load_lora_weights(cfg_diffuser_lora, adapter_name='cfg') | |
| adapter_names.append('cfg') | |
| adapter_weights.append(1) | |
| # turbo lora to speed up (from 25+ step to 12 step) | |
| if use_turbo: | |
| self.load_lora_weights( | |
| hf_hub_download( | |
| "alimama-creative/FLUX.1-Turbo-Alpha", "diffusion_pytorch_model.safetensors", local_dir='models' | |
| ), | |
| adapter_name='turbo', | |
| ) | |
| adapter_names.append('turbo') | |
| adapter_weights.append(1) | |
| if version == 'v1': | |
| # quality loras, one pos, one neg | |
| quality_lora_pos = convert_flux_lora_to_diffusers(quality_lora_pos) | |
| self.load_lora_weights(quality_lora_pos, adapter_name='quality_pos') | |
| adapter_names.append('quality_pos') | |
| adapter_weights.append(0.15) | |
| quality_lora_neg = convert_flux_lora_to_diffusers(quality_lora_neg) | |
| self.load_lora_weights(quality_lora_neg, adapter_name='quality_neg') | |
| adapter_names.append('quality_neg') | |
| adapter_weights.append(-0.8) | |
| elif version == 'v1.1': | |
| self.load_lora_weights(sft_lora, adapter_name='sft_lora') | |
| adapter_names.append('sft_lora') | |
| adapter_weights.append(1) | |
| self.load_lora_weights(dpo_lora, adapter_name='dpo_lora') | |
| adapter_names.append('dpo_lora') | |
| adapter_weights.append(1.25) | |
| self.set_adapters(adapter_names, adapter_weights) | |
| self.fuse_lora(adapter_names=adapter_names, lora_scale=1) | |
| self.unload_lora_weights() | |
| self.t5_embedding = self.t5_embedding.to(device) | |
| self.task_embedding = self.task_embedding.to(device) | |
| self.idx_embedding = self.idx_embedding.to(device) | |
| def _prepare_t5(self): | |
| self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2)) | |
| num_new_token = 10 | |
| new_token_list = [f"[ref#{i}]" for i in range(1, 10)] + ["[res]"] | |
| self.tokenizer_2.add_tokens(new_token_list, special_tokens=False) | |
| self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2)) | |
| input_embedding = self.text_encoder_2.get_input_embeddings().weight.data | |
| input_embedding[-num_new_token:] = self.t5_embedding.weight.data | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + start_height | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + start_width | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
| latent_image_ids = latent_image_ids.reshape( | |
| batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def _prepare_style_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + start_height | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + start_width | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
| latent_image_ids = latent_image_ids.reshape( | |
| batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| true_cfg_start_step: int = 1, | |
| true_cfg_end_step: int = 1, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| neg_guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| ref_conds=None, | |
| first_step_guidance_scale=3.5, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is | |
| not greater than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. | |
| true_cfg_scale (`float`, *optional*, defaults to 1.0): | |
| When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 3.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| _, | |
| ) = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 4.1 concat ref tokens to latent | |
| origin_img_len = latents.shape[1] | |
| embeddings = repeat(self.task_embedding.weight[1], "c -> n l c", n=batch_size, l=origin_img_len) | |
| ref_latents = [] | |
| ref_latent_image_idss = [] | |
| start_height = height // 16 | |
| start_width = width // 16 | |
| for ref_cond in ref_conds: | |
| img = ref_cond['img'] # [b, 3, h, w], range [-1, 1] | |
| task = ref_cond['task'] | |
| idx = ref_cond['idx'] | |
| # encode ref with VAE | |
| img = img.to(latents) | |
| ref_latent = self.vae.encode(img).latent_dist.sample() | |
| ref_latent = (ref_latent - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| cur_height = ref_latent.shape[2] | |
| cur_width = ref_latent.shape[3] | |
| ref_latent = self._pack_latents(ref_latent, batch_size, num_channels_latents, cur_height, cur_width) | |
| ref_latent_image_ids = self._prepare_latent_image_ids( | |
| batch_size, cur_height, cur_width, device, prompt_embeds.dtype, start_height, start_width | |
| ) | |
| start_height += cur_height // 2 | |
| start_width += cur_width // 2 | |
| # prepare task_idx_embedding | |
| task_idx = get_task_embedding_idx(task) | |
| cur_task_embedding = repeat( | |
| self.task_embedding.weight[task_idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1] | |
| ) | |
| cur_idx_embedding = repeat( | |
| self.idx_embedding.weight[idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1] | |
| ) | |
| cur_embedding = cur_task_embedding + cur_idx_embedding | |
| # concat ref to latent | |
| embeddings = torch.cat([embeddings, cur_embedding], dim=1) | |
| ref_latents.append(ref_latent) | |
| ref_latent_image_idss.append(ref_latent_image_ids) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| neg_guidance = torch.full([1], neg_guidance_scale, device=device, dtype=torch.float32) | |
| neg_guidance = neg_guidance.expand(latents.shape[0]) | |
| first_step_guidance = torch.full([1], first_step_guidance_scale, device=device, dtype=torch.float32) | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=torch.cat((latents, *ref_latents), dim=1), | |
| timestep=timestep / 1000, | |
| guidance=guidance if i > 0 else first_step_guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=torch.cat((latent_image_ids, *ref_latent_image_idss), dim=1), | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| embeddings=embeddings, | |
| )[0][:, :origin_img_len] | |
| if do_true_cfg and i >= true_cfg_start_step and i < true_cfg_end_step: | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=neg_guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype and torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |