Update bioprocess_model.py
Browse files- bioprocess_model.py +124 -52
bioprocess_model.py
CHANGED
|
@@ -1,52 +1,124 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# bioprocess_model.py
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from scipy.optimize import curve_fit
|
| 7 |
+
from sklearn.metrics import mean_squared_error
|
| 8 |
+
from sympy import symbols, lambdify, sympify, Function
|
| 9 |
+
|
| 10 |
+
class BioprocessModel:
|
| 11 |
+
def __init__(self):
|
| 12 |
+
self.params = {}
|
| 13 |
+
self.r2 = {}
|
| 14 |
+
self.rmse = {}
|
| 15 |
+
self.models = {} # Initialize the models dictionary
|
| 16 |
+
|
| 17 |
+
@staticmethod
|
| 18 |
+
def logistic(time, xo, xm, um):
|
| 19 |
+
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
|
| 20 |
+
|
| 21 |
+
@staticmethod
|
| 22 |
+
def substrate(time, so, p, q, xo, xm, um):
|
| 23 |
+
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
|
| 24 |
+
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
| 25 |
+
|
| 26 |
+
@staticmethod
|
| 27 |
+
def product(time, po, alpha, beta, xo, xm, um):
|
| 28 |
+
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1))) + \
|
| 29 |
+
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
| 30 |
+
|
| 31 |
+
def set_model(self, model_type, equation, params_str):
|
| 32 |
+
"""
|
| 33 |
+
Configures the model based on the type, equation, and parameters.
|
| 34 |
+
|
| 35 |
+
:param model_type: Type of the model ('biomass', 'substrate', 'product')
|
| 36 |
+
:param equation: The equation as a string
|
| 37 |
+
:param params_str: Comma-separated string of parameter names
|
| 38 |
+
"""
|
| 39 |
+
t_symbol = symbols('t')
|
| 40 |
+
X = Function('X') # Definir 'X(t)' como una funci贸n simb贸lica
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
expr = sympify(equation)
|
| 44 |
+
except Exception as e:
|
| 45 |
+
raise ValueError(f"Error al parsear la ecuaci贸n '{equation}': {e}")
|
| 46 |
+
|
| 47 |
+
params = [param.strip() for param in params_str.split(',')]
|
| 48 |
+
params_symbols = symbols(params)
|
| 49 |
+
|
| 50 |
+
# Extraer s铆mbolos utilizados en la expresi贸n
|
| 51 |
+
used_symbols = expr.free_symbols
|
| 52 |
+
# Convertir s铆mbolos a strings
|
| 53 |
+
used_params = [str(s) for s in used_symbols if s != t_symbol]
|
| 54 |
+
|
| 55 |
+
# Verificar que todos los par谩metros en params_str est茅n usados en la ecuaci贸n
|
| 56 |
+
for param in params:
|
| 57 |
+
if param not in used_params:
|
| 58 |
+
raise ValueError(f"El par谩metro '{param}' no se usa en la ecuaci贸n '{equation}'.")
|
| 59 |
+
|
| 60 |
+
if model_type == 'biomass':
|
| 61 |
+
# Biomasa como funci贸n de tiempo y par谩metros
|
| 62 |
+
func_expr = expr
|
| 63 |
+
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
|
| 64 |
+
self.models['biomass'] = {
|
| 65 |
+
'function': func,
|
| 66 |
+
'params': params
|
| 67 |
+
}
|
| 68 |
+
elif model_type in ['substrate', 'product']:
|
| 69 |
+
# Estos modelos dependen de biomasa, que ya deber铆a estar establecida
|
| 70 |
+
if 'biomass' not in self.models:
|
| 71 |
+
raise ValueError("Biomasa debe estar configurada antes de Sustrato o Producto.")
|
| 72 |
+
biomass_func = self.models['biomass']['function']
|
| 73 |
+
# Reemplazar 'X(t)' por la funci贸n de biomasa
|
| 74 |
+
func_expr = expr.subs('X(t)', biomass_func)
|
| 75 |
+
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
|
| 76 |
+
self.models[model_type] = {
|
| 77 |
+
'function': func,
|
| 78 |
+
'params': params
|
| 79 |
+
}
|
| 80 |
+
else:
|
| 81 |
+
raise ValueError(f"Tipo de modelo no soportado: {model_type}")
|
| 82 |
+
|
| 83 |
+
def fit_model(self, model_type, time, data, bounds=([-np.inf], [np.inf])):
|
| 84 |
+
"""
|
| 85 |
+
Fits the model to the data.
|
| 86 |
+
|
| 87 |
+
:param model_type: Type of the model ('biomass', 'substrate', 'product')
|
| 88 |
+
:param time: Time data
|
| 89 |
+
:param data: Observed data to fit
|
| 90 |
+
:param bounds: Bounds for the parameters
|
| 91 |
+
:return: Predicted data from the model
|
| 92 |
+
"""
|
| 93 |
+
if model_type not in self.models:
|
| 94 |
+
raise ValueError(f"Model type '{model_type}' is not set. Please use set_model first.")
|
| 95 |
+
|
| 96 |
+
func = self.models[model_type]['function']
|
| 97 |
+
params = self.models[model_type]['params']
|
| 98 |
+
|
| 99 |
+
# Definir la funci贸n de ajuste
|
| 100 |
+
def fit_func(t, *args):
|
| 101 |
+
try:
|
| 102 |
+
y = func(t, *args)
|
| 103 |
+
return y
|
| 104 |
+
except Exception as e:
|
| 105 |
+
raise RuntimeError(f"Error en fit_func: {e}")
|
| 106 |
+
|
| 107 |
+
# Definir una estimaci贸n inicial para los par谩metros
|
| 108 |
+
p0 = [1.0] * len(params) # Puedes ajustar estos valores seg煤n sea necesario
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
# Definir los l铆mites correctamente
|
| 112 |
+
lower_bounds, upper_bounds = bounds
|
| 113 |
+
|
| 114 |
+
# Ajustar el modelo usando curve_fit con p0
|
| 115 |
+
popt, _ = curve_fit(fit_func, time, data, p0=p0, bounds=(lower_bounds, upper_bounds), maxfev=10000)
|
| 116 |
+
|
| 117 |
+
# Guardar los par谩metros ajustados en el modelo
|
| 118 |
+
self.params[model_type] = {param: val for param, val in zip(params, popt)}
|
| 119 |
+
y_pred = fit_func(time, *popt)
|
| 120 |
+
self.r2[model_type] = 1 - (np.sum((data - y_pred) ** 2) / np.sum((data - np.mean(data)) ** 2))
|
| 121 |
+
self.rmse[model_type] = np.sqrt(mean_squared_error(data, y_pred))
|
| 122 |
+
return y_pred
|
| 123 |
+
except Exception as e:
|
| 124 |
+
raise RuntimeError(f"Error while fitting {model_type} model: {str(e)}")
|