Update bioprocess_model.py
Browse files- bioprocess_model.py +52 -148
bioprocess_model.py
CHANGED
|
@@ -1,148 +1,52 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def product_diff(self, P, t, params, biomass_params, X_func):
|
| 54 |
-
po, alpha, beta = params
|
| 55 |
-
xo, xm, um = biomass_params
|
| 56 |
-
X_t = X_func(t)
|
| 57 |
-
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
|
| 58 |
-
return dPdt
|
| 59 |
-
|
| 60 |
-
def process_data(self, df):
|
| 61 |
-
biomass_cols = [col for col in df.columns if 'Biomasa' in col]
|
| 62 |
-
substrate_cols = [col for col in df.columns if 'Sustrato' in col]
|
| 63 |
-
product_cols = [col for col in df.columns if 'Producto' in col]
|
| 64 |
-
|
| 65 |
-
time_col = [col for col in df.columns if 'Tiempo' in col][0]
|
| 66 |
-
time = df[time_col].values
|
| 67 |
-
|
| 68 |
-
data_biomass = np.array([df[col].values for col in biomass_cols])
|
| 69 |
-
self.datax.append(data_biomass)
|
| 70 |
-
self.dataxp.append(np.mean(data_biomass, axis=0))
|
| 71 |
-
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
|
| 72 |
-
|
| 73 |
-
data_substrate = np.array([df[col].values for col in substrate_cols])
|
| 74 |
-
self.datas.append(data_substrate)
|
| 75 |
-
self.datasp.append(np.mean(data_substrate, axis=0))
|
| 76 |
-
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
|
| 77 |
-
|
| 78 |
-
data_product = np.array([df[col].values for col in product_cols])
|
| 79 |
-
self.datap.append(data_product)
|
| 80 |
-
self.datapp.append(np.mean(data_product, axis=0))
|
| 81 |
-
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
|
| 82 |
-
|
| 83 |
-
self.time = time
|
| 84 |
-
|
| 85 |
-
def fit_model(self, model_type='logistic'):
|
| 86 |
-
if model_type == 'logistic':
|
| 87 |
-
self.fit_biomass = self.fit_biomass_logistic
|
| 88 |
-
self.fit_substrate = self.fit_substrate_logistic
|
| 89 |
-
self.fit_product = self.fit_product_logistic
|
| 90 |
-
|
| 91 |
-
def fit_biomass_logistic(self, time, biomass, bounds):
|
| 92 |
-
popt, _ = curve_fit(self.logistic, time, biomass, bounds=bounds, maxfev=10000)
|
| 93 |
-
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
|
| 94 |
-
y_pred = self.logistic(time, *popt)
|
| 95 |
-
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
|
| 96 |
-
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
|
| 97 |
-
return y_pred
|
| 98 |
-
|
| 99 |
-
def fit_substrate_logistic(self, time, substrate, biomass_params, bounds):
|
| 100 |
-
popt, _ = curve_fit(lambda t, so, p, q: self.substrate(t, so, p, q, *biomass_params.values()),
|
| 101 |
-
time, substrate, bounds=bounds)
|
| 102 |
-
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
|
| 103 |
-
y_pred = self.substrate(time, *popt, *biomass_params.values())
|
| 104 |
-
self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2))
|
| 105 |
-
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
|
| 106 |
-
return y_pred
|
| 107 |
-
|
| 108 |
-
def fit_product_logistic(self, time, product, biomass_params, bounds):
|
| 109 |
-
popt, _ = curve_fit(lambda t, po, alpha, beta: self.product(t, po, alpha, beta, *biomass_params.values()),
|
| 110 |
-
time, product, bounds=bounds)
|
| 111 |
-
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
|
| 112 |
-
y_pred = self.product(time, *popt, *biomass_params.values())
|
| 113 |
-
self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2))
|
| 114 |
-
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
|
| 115 |
-
return y_pred
|
| 116 |
-
|
| 117 |
-
def plot_combined_results(self, time, biomass, substrate, product,
|
| 118 |
-
y_pred_biomass, y_pred_substrate, y_pred_product,
|
| 119 |
-
biomass_std=None, substrate_std=None, product_std=None,
|
| 120 |
-
experiment_name='', legend_position='best', params_position='upper right',
|
| 121 |
-
show_legend=True, show_params=True,
|
| 122 |
-
style='whitegrid', line_color='#0000FF', point_color='#000000',
|
| 123 |
-
line_style='-', marker_style='o'):
|
| 124 |
-
sns.set_style(style)
|
| 125 |
-
|
| 126 |
-
fig, ax1 = plt.subplots(figsize=(10, 7))
|
| 127 |
-
ax1.set_xlabel('Tiempo')
|
| 128 |
-
ax1.set_ylabel('Biomasa', color=line_color)
|
| 129 |
-
|
| 130 |
-
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)')
|
| 131 |
-
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)')
|
| 132 |
-
ax1.tick_params(axis='y', labelcolor=line_color)
|
| 133 |
-
|
| 134 |
-
ax2 = ax1.twinx()
|
| 135 |
-
ax2.set_ylabel('Sustrato', color='green')
|
| 136 |
-
ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)')
|
| 137 |
-
ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)')
|
| 138 |
-
ax2.tick_params(axis='y', labelcolor='green')
|
| 139 |
-
|
| 140 |
-
ax3 = ax1.twinx()
|
| 141 |
-
ax3.spines["right"].set_position(("axes", 1.1))
|
| 142 |
-
ax3.set_ylabel('Producto', color='red')
|
| 143 |
-
ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)')
|
| 144 |
-
ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)')
|
| 145 |
-
ax3.tick_params(axis='y', labelcolor='red')
|
| 146 |
-
|
| 147 |
-
fig.tight_layout()
|
| 148 |
-
return fig
|
|
|
|
| 1 |
+
def set_model(self, model_type, equation, params_str):
|
| 2 |
+
"""
|
| 3 |
+
Configura el modelo basado en el tipo, ecuaci贸n y par谩metros.
|
| 4 |
+
|
| 5 |
+
:param model_type: Tipo de modelo ('biomass', 'substrate', 'product')
|
| 6 |
+
:param equation: La ecuaci贸n como cadena de texto
|
| 7 |
+
:param params_str: Cadena de texto con los nombres de los par谩metros separados por comas
|
| 8 |
+
"""
|
| 9 |
+
t_symbol = symbols('t')
|
| 10 |
+
# Definir 'X' como una funci贸n simb贸lica en sympy
|
| 11 |
+
X = Function('X')
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
expr = sympify(equation)
|
| 15 |
+
except Exception as e:
|
| 16 |
+
raise ValueError(f"Error al parsear la ecuaci贸n '{equation}': {e}")
|
| 17 |
+
|
| 18 |
+
params = [param.strip() for param in params_str.split(',')]
|
| 19 |
+
params_symbols = symbols(params)
|
| 20 |
+
|
| 21 |
+
# Extraer s铆mbolos utilizados en la expresi贸n
|
| 22 |
+
used_symbols = expr.free_symbols
|
| 23 |
+
# Convertir s铆mbolos a strings
|
| 24 |
+
used_params = [str(s) for s in used_symbols if s != t_symbol]
|
| 25 |
+
|
| 26 |
+
# Verificar que todos los par谩metros en params_str est茅n usados en la ecuaci贸n
|
| 27 |
+
for param in params:
|
| 28 |
+
if param not in used_params:
|
| 29 |
+
raise ValueError(f"El par谩metro '{param}' no se usa en la ecuaci贸n '{equation}'.")
|
| 30 |
+
|
| 31 |
+
if model_type == 'biomass':
|
| 32 |
+
# Biomasa como funci贸n de tiempo y par谩metros
|
| 33 |
+
func_expr = expr
|
| 34 |
+
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
|
| 35 |
+
self.models['biomass'] = {
|
| 36 |
+
'function': func,
|
| 37 |
+
'params': params
|
| 38 |
+
}
|
| 39 |
+
elif model_type in ['substrate', 'product']:
|
| 40 |
+
# Estos modelos dependen de biomasa, que ya deber铆a estar establecida
|
| 41 |
+
if 'biomass' not in self.models:
|
| 42 |
+
raise ValueError("Biomasa debe estar configurada antes de Sustrato o Producto.")
|
| 43 |
+
biomass_func = self.models['biomass']['function']
|
| 44 |
+
# Reemplazar 'X(t)' por la funci贸n de biomasa
|
| 45 |
+
func_expr = expr.subs('X(t)', biomass_func)
|
| 46 |
+
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
|
| 47 |
+
self.models[model_type] = {
|
| 48 |
+
'function': func,
|
| 49 |
+
'params': params
|
| 50 |
+
}
|
| 51 |
+
else:
|
| 52 |
+
raise ValueError(f"Tipo de modelo no soportado: {model_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|