Spaces:
Sleeping
Sleeping
| # ------------------------------- | |
| # 4. 本地推論模型設定 | |
| # ------------------------------- | |
| MODEL_MAP = { | |
| "Auto": None, # 自動選擇 | |
| "Gemma-2B": "google/gemma-2b", | |
| "Gemma-7B": "google/gemma-7b", | |
| "BTLM-3B-8K": "cerebras/btlm-3b-8k", | |
| "gpt-oss-20B": "openai-community/gpt-oss-20b" | |
| } | |
| # 快取 pipeline 避免每次重建 | |
| _loaded_pipelines = {} | |
| def get_pipeline(model_name): | |
| if model_name not in _loaded_pipelines: | |
| print(f"🔄 正在載入模型 {model_name} ...") | |
| model_id = MODEL_MAP[model_name] | |
| generator = pipeline( | |
| "text-generation", | |
| model=model_id, | |
| tokenizer=model_id, | |
| device_map="auto", | |
| ) | |
| _loaded_pipelines[model_name] = generator | |
| return _loaded_pipelines[model_name] | |
| def call_local_inference(model_name, prompt, max_new_tokens=512): | |
| try: | |
| generator = get_pipeline(model_name) | |
| outputs = generator(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.7) | |
| return outputs[0]["generated_text"] | |
| except Exception as e: | |
| return f"(生成失敗:{e})" | |
| # ------------------------------- | |
| # 5. 生成文章(即時進度) | |
| # ------------------------------- | |
| def pick_model_auto(segments): | |
| """根據段落數自動挑選模型""" | |
| if segments <= 3: | |
| return "Gemma-2B" | |
| elif segments <= 6: | |
| return "BTLM-3B-8K" | |
| else: | |
| return "gpt-oss-20B" | |
| def generate_article_progress(query, model_name, segments=5): | |
| docx_file = "/tmp/generated_article.docx" | |
| doc = DocxDocument() | |
| doc.add_heading(query, level=1) | |
| # 自動挑模型 | |
| if model_name == "Auto": | |
| selected_model = pick_model_auto(int(segments)) | |
| else: | |
| selected_model = model_name | |
| print(f"👉 使用模型: {selected_model}") | |
| all_text = [] | |
| prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。" | |
| for i in range(int(segments)): | |
| paragraph = call_local_inference(selected_model, prompt) | |
| all_text.append(paragraph) | |
| doc.add_paragraph(paragraph) | |
| prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:" | |
| yield "\n\n".join(all_text), None, f"本次使用模型:{selected_model}" | |
| doc.save(docx_file) | |
| yield "\n\n".join(all_text), docx_file, f"本次使用模型:{selected_model}" | |
| # ------------------------------- | |
| # 6. Gradio 介面 | |
| # ------------------------------- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 佛教經論 RAG 系統 (本地推論 + Auto 模型選擇)") | |
| gr.Markdown("使用 Hugging Face Space + FAISS RAG,本地模型推論,不消耗 API 額度。") | |
| query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題") | |
| model_dropdown = gr.Dropdown( | |
| choices=list(MODEL_MAP.keys()), | |
| value="Auto", # 預設自動模式 | |
| label="選擇生成模型" | |
| ) | |
| segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數") | |
| output_text = gr.Textbox(label="生成文章") | |
| output_file = gr.File(label="下載 DOCX") | |
| model_used_text = gr.Textbox(label="實際使用模型", interactive=False) | |
| btn = gr.Button("生成文章") | |
| btn.click( | |
| generate_article_progress, | |
| inputs=[query_input, model_dropdown, segments_input], | |
| outputs=[output_text, output_file, model_used_text] | |
| ) | |
| # ------------------------------- | |
| # 7. 啟動 Gradio | |
| # ------------------------------- | |
| if __name__ == "__main__": | |
| demo.launch() | |