RAG_Test_System / app.py
CHUNYU0505's picture
Update app.py
d051231 verified
raw
history blame
5.6 kB
# app.py
import os, torch
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from docx import Document as DocxDocument
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from huggingface_hub import login, snapshot_download
import gradio as gr
# -------------------------------
# 0. 載入向量資料庫
# -------------------------------
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
DB_PATH = "./faiss_db"
if os.path.exists(DB_PATH):
print("✅ 載入現有向量資料庫...")
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
else:
raise ValueError("❌ 沒找到 faiss_db,請先建立向量資料庫")
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
# -------------------------------
# 1. 模型設定(中文 GPT2 + fallback)
# -------------------------------
PRIMARY_MODEL = "uer/gpt2-chinese-cluecorpusmedium"
FALLBACK_MODEL = "uer/gpt2-chinese-cluecorpussmall"
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
print("✅ 已使用 HUGGINGFACEHUB_API_TOKEN 登入 Hugging Face")
def try_download_model(repo_id):
local_dir = f"./models/{repo_id.split('/')[-1]}"
if not os.path.exists(local_dir):
print(f"⬇️ 嘗試下載模型 {repo_id} ...")
try:
snapshot_download(repo_id=repo_id, token=HF_TOKEN, local_dir=local_dir)
except Exception as e:
print(f"⚠️ 模型 {repo_id} 無法下載: {e}")
return None
return local_dir
LOCAL_MODEL_DIR = try_download_model(PRIMARY_MODEL)
if LOCAL_MODEL_DIR is None:
print("⚠️ 切換到 fallback 模型:小型 GPT2-Chinese")
LOCAL_MODEL_DIR = try_download_model(FALLBACK_MODEL)
MODEL_NAME = FALLBACK_MODEL
else:
MODEL_NAME = PRIMARY_MODEL
print(f"👉 最終使用模型:{MODEL_NAME}")
# -------------------------------
# 2. pipeline 載入
# -------------------------------
tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR)
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL_DIR)
# 修正 pad_token 缺失問題
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=-1 # CPU
)
def call_local_inference(prompt, max_new_tokens=256):
try:
if "中文" not in prompt:
prompt += "\n(請用中文回答)"
outputs = generator(
prompt,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id
)
return outputs[0]["generated_text"]
except Exception as e:
return f"(生成失敗:{e})"
# -------------------------------
# 3. 文章生成(RAG + 即時寫入DOCX + 檢索片段 + 進度提示)
# -------------------------------
def generate_article_progress(query, segments=5):
docx_file = "/tmp/generated_article.docx"
doc = DocxDocument()
doc.add_heading(query, level=1)
doc.save(docx_file) # 先建立空的檔案
all_text = []
# 🔍 RAG 檢索佛經段落
retrieved_docs = retriever.get_relevant_documents(query)
context_texts = [d.page_content for d in retrieved_docs]
context = "\n".join([f"{i+1}. {txt}" for i, txt in enumerate(context_texts[:3])])
for i in range(segments):
progress_text = f"⏳ 正在生成第 {i+1}/{segments} 段..."
prompt = (
f"以下是佛教經論的相關段落:\n{context}\n\n"
f"請依據上面內容,寫一段約150-200字的中文文章,"
f"主題:{query}。\n第{i+1}段:"
)
paragraph = call_local_inference(prompt)
all_text.append(paragraph)
# ✅ 每段生成後即時寫入 DOCX
doc = DocxDocument(docx_file)
doc.add_paragraph(f"第{i+1}段:\n{paragraph}")
doc.save(docx_file)
yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME}", context, progress_text
final_progress = f"✅ 已完成全部 {segments} 段生成!"
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}", context, final_progress
# -------------------------------
# 4. Gradio 介面
# -------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 📺 電視弘法視頻生成文章RAG系統")
gr.Markdown("使用 GPT2-Chinese + FAISS RAG,生成佛教主題文章。")
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
output_text = gr.Textbox(label="生成文章")
output_file = gr.File(label="下載 DOCX")
model_used_text = gr.Textbox(label="實際使用模型", interactive=False)
context_text = gr.Textbox(label="檢索到的佛經片段", interactive=False, lines=6)
progress_text = gr.Textbox(label="生成進度", interactive=False)
btn = gr.Button("生成文章")
btn.click(
generate_article_progress,
inputs=[query_input, segments_input],
outputs=[output_text, output_file, model_used_text, context_text, progress_text]
)
if __name__ == "__main__":
demo.launch()