Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,10 +10,10 @@ from huggingface_hub import login, snapshot_download
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# -------------------------------
|
| 13 |
-
# 1. 模型設定(中文 T5
|
| 14 |
# -------------------------------
|
| 15 |
-
PRIMARY_MODEL = "
|
| 16 |
-
FALLBACK_MODEL = "uer/
|
| 17 |
|
| 18 |
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 19 |
if HF_TOKEN:
|
|
@@ -31,9 +31,10 @@ def try_download_model(repo_id):
|
|
| 31 |
return None
|
| 32 |
return local_dir
|
| 33 |
|
|
|
|
| 34 |
LOCAL_MODEL_DIR = try_download_model(PRIMARY_MODEL)
|
| 35 |
if LOCAL_MODEL_DIR is None:
|
| 36 |
-
print("⚠️ 切換到 fallback 模型:小型
|
| 37 |
LOCAL_MODEL_DIR = try_download_model(FALLBACK_MODEL)
|
| 38 |
MODEL_NAME = FALLBACK_MODEL
|
| 39 |
else:
|
|
@@ -42,28 +43,16 @@ else:
|
|
| 42 |
print(f"👉 最終使用模型:{MODEL_NAME}")
|
| 43 |
|
| 44 |
# -------------------------------
|
| 45 |
-
# 2. pipeline 載入
|
| 46 |
# -------------------------------
|
| 47 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 48 |
-
|
| 49 |
-
use_fast=False # 防止 sentencepiece 問題
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
# 判斷 GPU (CL3) 或 CPU
|
| 53 |
-
device = 0 if torch.cuda.is_available() else -1
|
| 54 |
-
print(f"💻 使用裝置:{'GPU' if device == 0 else 'CPU'}")
|
| 55 |
-
|
| 56 |
-
try:
|
| 57 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL_DIR)
|
| 58 |
-
except:
|
| 59 |
-
from transformers import AutoModelForCausalLM
|
| 60 |
-
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL_DIR)
|
| 61 |
|
| 62 |
generator = pipeline(
|
| 63 |
-
"text2text-generation"
|
| 64 |
model=model,
|
| 65 |
tokenizer=tokenizer,
|
| 66 |
-
device
|
| 67 |
)
|
| 68 |
|
| 69 |
def call_local_inference(prompt, max_new_tokens=256):
|
|
@@ -79,68 +68,69 @@ def call_local_inference(prompt, max_new_tokens=256):
|
|
| 79 |
return f"(生成失敗:{e})"
|
| 80 |
|
| 81 |
# -------------------------------
|
| 82 |
-
# 3.
|
| 83 |
# -------------------------------
|
| 84 |
-
DB_PATH = "./faiss_db"
|
| 85 |
EMBEDDINGS_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 86 |
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
| 87 |
|
|
|
|
| 88 |
if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
|
| 89 |
print("✅ 載入現有向量資料庫...")
|
| 90 |
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
|
| 91 |
else:
|
| 92 |
-
print("⚠️
|
| 93 |
-
db =
|
| 94 |
|
| 95 |
-
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k":
|
| 96 |
|
| 97 |
# -------------------------------
|
| 98 |
-
# 4.
|
| 99 |
# -------------------------------
|
| 100 |
-
def generate_article_progress(query, segments=
|
| 101 |
docx_file = "/tmp/generated_article.docx"
|
| 102 |
doc = DocxDocument()
|
| 103 |
doc.add_heading(query, level=1)
|
| 104 |
|
| 105 |
all_text = []
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
|
| 111 |
for i in range(segments):
|
| 112 |
prompt = (
|
| 113 |
-
f"
|
| 114 |
f"請依據上面內容,寫一段約150-200字的中文文章,"
|
| 115 |
f"主題:{query}。\n第{i+1}段:"
|
| 116 |
)
|
| 117 |
paragraph = call_local_inference(prompt)
|
| 118 |
all_text.append(paragraph)
|
| 119 |
doc.add_paragraph(paragraph)
|
| 120 |
-
|
| 121 |
-
yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME},裝置:{'GPU' if device == 0 else 'CPU'}"
|
| 122 |
|
| 123 |
doc.save(docx_file)
|
| 124 |
-
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}
|
| 125 |
|
| 126 |
# -------------------------------
|
| 127 |
# 5. Gradio 介面
|
| 128 |
# -------------------------------
|
| 129 |
with gr.Blocks() as demo:
|
| 130 |
gr.Markdown("# 📺 電視弘法視頻生成文章 RAG 系統")
|
| 131 |
-
gr.Markdown("使用
|
| 132 |
|
| 133 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 134 |
-
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=
|
| 135 |
output_text = gr.Textbox(label="生成文章")
|
| 136 |
output_file = gr.File(label="下載 DOCX")
|
| 137 |
-
|
| 138 |
|
| 139 |
btn = gr.Button("生成文章")
|
| 140 |
btn.click(
|
| 141 |
generate_article_progress,
|
| 142 |
inputs=[query_input, segments_input],
|
| 143 |
-
outputs=[output_text, output_file,
|
| 144 |
)
|
| 145 |
|
| 146 |
if __name__ == "__main__":
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# -------------------------------
|
| 13 |
+
# 1. 模型設定(中文 T5 + fallback)
|
| 14 |
# -------------------------------
|
| 15 |
+
PRIMARY_MODEL = "Langboat/mengzi-t5-base" # ✅ 帶 spiece.model
|
| 16 |
+
FALLBACK_MODEL = "uer/t5-small-chinese-cluecorpussmall"
|
| 17 |
|
| 18 |
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 19 |
if HF_TOKEN:
|
|
|
|
| 31 |
return None
|
| 32 |
return local_dir
|
| 33 |
|
| 34 |
+
# 嘗試下載 Primary,失敗就換 Small
|
| 35 |
LOCAL_MODEL_DIR = try_download_model(PRIMARY_MODEL)
|
| 36 |
if LOCAL_MODEL_DIR is None:
|
| 37 |
+
print("⚠️ 切換到 fallback 模型:小型 T5-Chinese")
|
| 38 |
LOCAL_MODEL_DIR = try_download_model(FALLBACK_MODEL)
|
| 39 |
MODEL_NAME = FALLBACK_MODEL
|
| 40 |
else:
|
|
|
|
| 43 |
print(f"👉 最終使用模型:{MODEL_NAME}")
|
| 44 |
|
| 45 |
# -------------------------------
|
| 46 |
+
# 2. pipeline 載入 (Seq2SeqLM for T5)
|
| 47 |
# -------------------------------
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR)
|
| 49 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
generator = pipeline(
|
| 52 |
+
"text2text-generation",
|
| 53 |
model=model,
|
| 54 |
tokenizer=tokenizer,
|
| 55 |
+
device=-1 # CPU
|
| 56 |
)
|
| 57 |
|
| 58 |
def call_local_inference(prompt, max_new_tokens=256):
|
|
|
|
| 68 |
return f"(生成失敗:{e})"
|
| 69 |
|
| 70 |
# -------------------------------
|
| 71 |
+
# 3. 建立/載入向量資料庫
|
| 72 |
# -------------------------------
|
|
|
|
| 73 |
EMBEDDINGS_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 74 |
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
| 75 |
|
| 76 |
+
DB_PATH = "./faiss_db"
|
| 77 |
if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
|
| 78 |
print("✅ 載入現有向量資料庫...")
|
| 79 |
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
|
| 80 |
else:
|
| 81 |
+
print("⚠️ 沒有找到資料庫,請先建立 faiss_db")
|
| 82 |
+
db = None
|
| 83 |
|
| 84 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3}) if db else None
|
| 85 |
|
| 86 |
# -------------------------------
|
| 87 |
+
# 4. 文章生成(加入 RAG)
|
| 88 |
# -------------------------------
|
| 89 |
+
def generate_article_progress(query, segments=5):
|
| 90 |
docx_file = "/tmp/generated_article.docx"
|
| 91 |
doc = DocxDocument()
|
| 92 |
doc.add_heading(query, level=1)
|
| 93 |
|
| 94 |
all_text = []
|
| 95 |
|
| 96 |
+
context = ""
|
| 97 |
+
if retriever:
|
| 98 |
+
retrieved_docs = retriever.get_relevant_documents(query)
|
| 99 |
+
context_texts = [d.page_content for d in retrieved_docs]
|
| 100 |
+
context = "\n".join([f"{i+1}. {txt}" for i, txt in enumerate(context_texts[:3])])
|
| 101 |
|
| 102 |
for i in range(segments):
|
| 103 |
prompt = (
|
| 104 |
+
f"以下是佛教經論的相關段落:\n{context}\n\n"
|
| 105 |
f"請依據上面內容,寫一段約150-200字的中文文章,"
|
| 106 |
f"主題:{query}。\n第{i+1}段:"
|
| 107 |
)
|
| 108 |
paragraph = call_local_inference(prompt)
|
| 109 |
all_text.append(paragraph)
|
| 110 |
doc.add_paragraph(paragraph)
|
| 111 |
+
yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME}"
|
|
|
|
| 112 |
|
| 113 |
doc.save(docx_file)
|
| 114 |
+
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}"
|
| 115 |
|
| 116 |
# -------------------------------
|
| 117 |
# 5. Gradio 介面
|
| 118 |
# -------------------------------
|
| 119 |
with gr.Blocks() as demo:
|
| 120 |
gr.Markdown("# 📺 電視弘法視頻生成文章 RAG 系統")
|
| 121 |
+
gr.Markdown("使用 FAISS + 中文 T5 模型,基於資料庫內容生成文章。")
|
| 122 |
|
| 123 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 124 |
+
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
| 125 |
output_text = gr.Textbox(label="生成文章")
|
| 126 |
output_file = gr.File(label="下載 DOCX")
|
| 127 |
+
model_info = gr.Label(label="模型資訊")
|
| 128 |
|
| 129 |
btn = gr.Button("生成文章")
|
| 130 |
btn.click(
|
| 131 |
generate_article_progress,
|
| 132 |
inputs=[query_input, segments_input],
|
| 133 |
+
outputs=[output_text, output_file, model_info]
|
| 134 |
)
|
| 135 |
|
| 136 |
if __name__ == "__main__":
|