Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,12 +10,12 @@ from huggingface_hub import login, snapshot_download
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# -------------------------------
|
| 13 |
-
# 1.
|
| 14 |
# -------------------------------
|
| 15 |
MODEL_MAP = {
|
| 16 |
"Auto": None,
|
| 17 |
"BTLM-3B-8K": "cerebras/btlm-3b-8k-base",
|
| 18 |
-
"
|
| 19 |
"BART-Base": "facebook/bart-base"
|
| 20 |
}
|
| 21 |
|
|
@@ -29,7 +29,7 @@ if HF_TOKEN:
|
|
| 29 |
# -------------------------------
|
| 30 |
LOCAL_MODEL_DIRS = {}
|
| 31 |
for name, repo in MODEL_MAP.items():
|
| 32 |
-
if repo is None:
|
| 33 |
continue
|
| 34 |
try:
|
| 35 |
local_dir = f"./models/{repo.split('/')[-1]}"
|
|
@@ -65,7 +65,7 @@ def get_pipeline(model_name):
|
|
| 65 |
"text-generation",
|
| 66 |
model=model,
|
| 67 |
tokenizer=tokenizer,
|
| 68 |
-
device=-1 # CPU
|
| 69 |
)
|
| 70 |
_loaded_pipelines[model_name] = generator
|
| 71 |
return _loaded_pipelines[model_name]
|
|
@@ -73,6 +73,11 @@ def get_pipeline(model_name):
|
|
| 73 |
def call_local_inference(model_name, prompt, max_new_tokens=256):
|
| 74 |
try:
|
| 75 |
generator = get_pipeline(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
outputs = generator(
|
| 77 |
prompt,
|
| 78 |
max_new_tokens=max_new_tokens,
|
|
@@ -89,7 +94,7 @@ def call_local_inference(model_name, prompt, max_new_tokens=256):
|
|
| 89 |
# -------------------------------
|
| 90 |
def pick_model_auto(segments):
|
| 91 |
if segments <= 3:
|
| 92 |
-
return "
|
| 93 |
elif segments <= 6:
|
| 94 |
return "BTLM-3B-8K"
|
| 95 |
else:
|
|
@@ -104,13 +109,15 @@ def generate_article_progress(query, model_name, segments=5):
|
|
| 104 |
print(f"👉 使用模型: {selected_model}")
|
| 105 |
|
| 106 |
all_text = []
|
| 107 |
-
|
| 108 |
|
| 109 |
for i in range(segments):
|
|
|
|
|
|
|
| 110 |
paragraph = call_local_inference(selected_model, prompt)
|
| 111 |
all_text.append(paragraph)
|
| 112 |
doc.add_paragraph(paragraph)
|
| 113 |
-
|
| 114 |
yield "\n\n".join(all_text), None, f"本次使用模型:{selected_model}"
|
| 115 |
|
| 116 |
doc.save(docx_file)
|
|
@@ -120,8 +127,8 @@ def generate_article_progress(query, model_name, segments=5):
|
|
| 120 |
# 5. Gradio 介面
|
| 121 |
# -------------------------------
|
| 122 |
with gr.Blocks() as demo:
|
| 123 |
-
gr.Markdown("# 📺 電視弘法視頻生成文章RAG系統
|
| 124 |
-
gr.Markdown("支援
|
| 125 |
|
| 126 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 127 |
model_dropdown = gr.Dropdown(choices=list(MODEL_MAP.keys()), value="Auto", label="選擇生成模型")
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# -------------------------------
|
| 13 |
+
# 1. 模型清單(中文 & 英文)
|
| 14 |
# -------------------------------
|
| 15 |
MODEL_MAP = {
|
| 16 |
"Auto": None,
|
| 17 |
"BTLM-3B-8K": "cerebras/btlm-3b-8k-base",
|
| 18 |
+
"GPT2-Chinese": "uer/gpt2-chinese-cluecorpusmedium", # 中文 GPT2
|
| 19 |
"BART-Base": "facebook/bart-base"
|
| 20 |
}
|
| 21 |
|
|
|
|
| 29 |
# -------------------------------
|
| 30 |
LOCAL_MODEL_DIRS = {}
|
| 31 |
for name, repo in MODEL_MAP.items():
|
| 32 |
+
if repo is None:
|
| 33 |
continue
|
| 34 |
try:
|
| 35 |
local_dir = f"./models/{repo.split('/')[-1]}"
|
|
|
|
| 65 |
"text-generation",
|
| 66 |
model=model,
|
| 67 |
tokenizer=tokenizer,
|
| 68 |
+
device=-1 # CPU
|
| 69 |
)
|
| 70 |
_loaded_pipelines[model_name] = generator
|
| 71 |
return _loaded_pipelines[model_name]
|
|
|
|
| 73 |
def call_local_inference(model_name, prompt, max_new_tokens=256):
|
| 74 |
try:
|
| 75 |
generator = get_pipeline(model_name)
|
| 76 |
+
|
| 77 |
+
# ✅ 強制中文模式:補上提示
|
| 78 |
+
if "中文" not in prompt and "Chinese" not in prompt:
|
| 79 |
+
prompt += "\n(請用中文回答)"
|
| 80 |
+
|
| 81 |
outputs = generator(
|
| 82 |
prompt,
|
| 83 |
max_new_tokens=max_new_tokens,
|
|
|
|
| 94 |
# -------------------------------
|
| 95 |
def pick_model_auto(segments):
|
| 96 |
if segments <= 3:
|
| 97 |
+
return "GPT2-Chinese" # 短文 → 中文 GPT2
|
| 98 |
elif segments <= 6:
|
| 99 |
return "BTLM-3B-8K"
|
| 100 |
else:
|
|
|
|
| 109 |
print(f"👉 使用模型: {selected_model}")
|
| 110 |
|
| 111 |
all_text = []
|
| 112 |
+
base_prompt = f"請依據下列主題生成一篇中文文章,主題:{query}\n每段約150-200字。\n"
|
| 113 |
|
| 114 |
for i in range(segments):
|
| 115 |
+
# ✅ 每段獨立生成
|
| 116 |
+
prompt = base_prompt + f"第{i+1}段:"
|
| 117 |
paragraph = call_local_inference(selected_model, prompt)
|
| 118 |
all_text.append(paragraph)
|
| 119 |
doc.add_paragraph(paragraph)
|
| 120 |
+
|
| 121 |
yield "\n\n".join(all_text), None, f"本次使用模型:{selected_model}"
|
| 122 |
|
| 123 |
doc.save(docx_file)
|
|
|
|
| 127 |
# 5. Gradio 介面
|
| 128 |
# -------------------------------
|
| 129 |
with gr.Blocks() as demo:
|
| 130 |
+
gr.Markdown("# 📺 電視弘法視頻生成文章RAG系統")
|
| 131 |
+
gr.Markdown("支援 GPT2-Chinese / BTLM-3B / BART-Base,Auto 模式會自動選擇,並強制中文輸出。")
|
| 132 |
|
| 133 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 134 |
model_dropdown = gr.Dropdown(choices=list(MODEL_MAP.keys()), value="Auto", label="選擇生成模型")
|