CHUNYU0505 commited on
Commit
d0ba755
·
verified ·
1 Parent(s): e89ffa8

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +128 -0
  2. requirements.txt +12 -0
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ # -------------------------------
3
+ # 1. 套件載入
4
+ # -------------------------------
5
+ import os, glob, requests
6
+ from langchain.docstore.document import Document
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
+ from langchain.chains import RetrievalQA
9
+ from langchain_huggingface import HuggingFaceEmbeddings
10
+ from docx import Document as DocxDocument
11
+ import gradio as gr
12
+ from langchain_community.vectorstores import FAISS
13
+ from langchain_community.llms import HuggingFaceHub
14
+
15
+ # -------------------------------
16
+ # 2. 環境變數與資料路徑
17
+ # -------------------------------
18
+ TXT_FOLDER = "./out_texts"
19
+ DB_PATH = "./faiss_db"
20
+ os.makedirs(DB_PATH, exist_ok=True)
21
+
22
+ HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
23
+ if not HF_TOKEN:
24
+ raise ValueError("請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN")
25
+
26
+ # -------------------------------
27
+ # 3. 建立或載入向量資料庫
28
+ # -------------------------------
29
+ EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
30
+ embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
31
+
32
+ if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
33
+ print("載入現有向量資料庫...")
34
+ db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
35
+ else:
36
+ print("沒有資料庫,開始建立新向量資料庫...")
37
+ txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
38
+ docs = []
39
+ for filepath in txt_files:
40
+ with open(filepath, "r", encoding="utf-8") as f:
41
+ docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)}))
42
+ splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
43
+ split_docs = splitter.split_documents(docs)
44
+ db = FAISS.from_documents(split_docs, embeddings_model)
45
+ db.save_local(DB_PATH)
46
+
47
+ retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
48
+
49
+ # -------------------------------
50
+ # 4. LLM 設定(Hugging Face Hub)
51
+ # -------------------------------
52
+ llm = HuggingFaceHub(
53
+ repo_id="google/flan-t5-large",
54
+ model_kwargs={"temperature": 0.7, "max_new_tokens": 512},
55
+ huggingfacehub_api_token=HF_TOKEN
56
+ )
57
+
58
+ qa_chain = RetrievalQA.from_chain_type(
59
+ llm=llm,
60
+ retriever=retriever,
61
+ return_source_documents=True
62
+ )
63
+
64
+ # -------------------------------
65
+ # 5. 查詢 API 剩餘額度
66
+ # -------------------------------
67
+ def get_hf_rate_limit():
68
+ headers = {"Authorization": f"Bearer {HF_TOKEN}"}
69
+ try:
70
+ r = requests.get("https://huggingface.co/api/whoami", headers=headers)
71
+ r.raise_for_status()
72
+ data = r.json()
73
+ used = data.get("rate_limit", {}).get("used", 0)
74
+ remaining = 300 - used if used is not None else "未知"
75
+ return f"本小時剩餘 API 次數:約 {remaining}"
76
+ except:
77
+ return "無法取得 API 速率資訊"
78
+
79
+ # -------------------------------
80
+ # 6. 生成文章
81
+ # -------------------------------
82
+ def generate_article_with_rate(query, segments=5):
83
+ docx_file = "/tmp/generated_article.docx"
84
+ doc = DocxDocument()
85
+ doc.add_heading(query, level=1)
86
+
87
+ all_text = []
88
+ prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
89
+
90
+ for i in range(int(segments)):
91
+ try:
92
+ result = qa_chain({"query": prompt})
93
+ paragraph = result["result"].strip()
94
+ if not paragraph:
95
+ paragraph = "(本段生成失敗,請嘗試減少段落或改用較小模型。)"
96
+ except Exception as e:
97
+ paragraph = f"(本段生成失敗:{e})"
98
+ all_text.append(paragraph)
99
+ doc.add_paragraph(paragraph)
100
+ prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
101
+
102
+ doc.save(docx_file)
103
+ full_text = "\n\n".join(all_text)
104
+
105
+ # 取得 API 剩餘次數
106
+ rate_info = get_hf_rate_limit()
107
+ return f"{rate_info}\n\n{full_text}", docx_file
108
+
109
+ # -------------------------------
110
+ # 7. Gradio 介面
111
+ # -------------------------------
112
+ iface = gr.Interface(
113
+ fn=generate_article_with_rate,
114
+ inputs=[
115
+ gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題"),
116
+ gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
117
+ ],
118
+ outputs=[
119
+ gr.Textbox(label="生成文章 + API 剩餘次數"),
120
+ gr.File(label="下載 DOCX")
121
+ ],
122
+ title="佛教經論 RAG 系統 (HF API)",
123
+ description="使用 Hugging Face Hub LLM + FAISS RAG,生成文章並提示 API 剩餘額度。"
124
+ )
125
+
126
+ if __name__ == "__main__":
127
+ iface.launch()
128
+
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain>=0.2.0
2
+ langchain-community>=0.2.0
3
+ langchain-huggingface>=0.0.5
4
+ transformers
5
+ sentence-transformers
6
+ faiss-cpu
7
+ gradio
8
+ python-docx
9
+ tqdm
10
+ huggingface_hub
11
+ requests
12
+