CHUNYU0505 commited on
Commit
d384aa1
·
verified ·
1 Parent(s): b870611

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -128
app.py DELETED
@@ -1,128 +0,0 @@
1
- # app.py
2
- # -------------------------------
3
- # 1. 套件載入
4
- # -------------------------------
5
- import os, glob, requests
6
- from langchain.docstore.document import Document
7
- from langchain.text_splitter import RecursiveCharacterTextSplitter
8
- from langchain.chains import RetrievalQA
9
- from langchain_huggingface import HuggingFaceEmbeddings
10
- from docx import Document as DocxDocument
11
- import gradio as gr
12
- from langchain_community.vectorstores import FAISS
13
- from langchain_community.llms import HuggingFaceHub
14
-
15
- # -------------------------------
16
- # 2. 環境變數與資料路徑
17
- # -------------------------------
18
- TXT_FOLDER = "./out_texts"
19
- DB_PATH = "./faiss_db"
20
- os.makedirs(DB_PATH, exist_ok=True)
21
-
22
- HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
23
- if not HF_TOKEN:
24
- raise ValueError("請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN")
25
-
26
- # -------------------------------
27
- # 3. 建立或載入向量資料庫
28
- # -------------------------------
29
- EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
30
- embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
31
-
32
- if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
33
- print("載入現有向量資料庫...")
34
- db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
35
- else:
36
- print("沒有資料庫,開始建立新向量資料庫...")
37
- txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
38
- docs = []
39
- for filepath in txt_files:
40
- with open(filepath, "r", encoding="utf-8") as f:
41
- docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)}))
42
- splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
43
- split_docs = splitter.split_documents(docs)
44
- db = FAISS.from_documents(split_docs, embeddings_model)
45
- db.save_local(DB_PATH)
46
-
47
- retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
48
-
49
- # -------------------------------
50
- # 4. LLM 設定(Hugging Face Hub)
51
- # -------------------------------
52
- llm = HuggingFaceHub(
53
- repo_id="google/flan-t5-large",
54
- model_kwargs={"temperature": 0.7, "max_new_tokens": 512},
55
- huggingfacehub_api_token=HF_TOKEN
56
- )
57
-
58
- qa_chain = RetrievalQA.from_chain_type(
59
- llm=llm,
60
- retriever=retriever,
61
- return_source_documents=True
62
- )
63
-
64
- # -------------------------------
65
- # 5. 查詢 API 剩餘額度
66
- # -------------------------------
67
- def get_hf_rate_limit():
68
- headers = {"Authorization": f"Bearer {HF_TOKEN}"}
69
- try:
70
- r = requests.get("https://huggingface.co/api/whoami", headers=headers)
71
- r.raise_for_status()
72
- data = r.json()
73
- used = data.get("rate_limit", {}).get("used", 0)
74
- remaining = 300 - used if used is not None else "未知"
75
- return f"本小時剩餘 API 次數:約 {remaining}"
76
- except:
77
- return "無法取得 API 速率資訊"
78
-
79
- # -------------------------------
80
- # 6. 生成文章
81
- # -------------------------------
82
- def generate_article_with_rate(query, segments=5):
83
- docx_file = "/tmp/generated_article.docx"
84
- doc = DocxDocument()
85
- doc.add_heading(query, level=1)
86
-
87
- all_text = []
88
- prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
89
-
90
- for i in range(int(segments)):
91
- try:
92
- result = qa_chain({"query": prompt})
93
- paragraph = result["result"].strip()
94
- if not paragraph:
95
- paragraph = "(本段生成失敗,請嘗試減少段落或改用較小模型。)"
96
- except Exception as e:
97
- paragraph = f"(本段生成失敗:{e})"
98
- all_text.append(paragraph)
99
- doc.add_paragraph(paragraph)
100
- prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
101
-
102
- doc.save(docx_file)
103
- full_text = "\n\n".join(all_text)
104
-
105
- # 取得 API 剩餘次數
106
- rate_info = get_hf_rate_limit()
107
- return f"{rate_info}\n\n{full_text}", docx_file
108
-
109
- # -------------------------------
110
- # 7. Gradio 介面
111
- # -------------------------------
112
- iface = gr.Interface(
113
- fn=generate_article_with_rate,
114
- inputs=[
115
- gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題"),
116
- gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
117
- ],
118
- outputs=[
119
- gr.Textbox(label="生成文章 + API 剩餘次數"),
120
- gr.File(label="下載 DOCX")
121
- ],
122
- title="佛教經論 RAG 系統 (HF API)",
123
- description="使用 Hugging Face Hub LLM + FAISS RAG,生成文章並提示 API 剩餘額度。"
124
- )
125
-
126
- if __name__ == "__main__":
127
- iface.launch()
128
-