Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,147 +1,68 @@
|
|
| 1 |
-
# app.py
|
| 2 |
# -------------------------------
|
| 3 |
-
#
|
| 4 |
# -------------------------------
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
| 12 |
|
| 13 |
-
# -------------------------------
|
| 14 |
-
# 2. 環境變數與資料路徑
|
| 15 |
-
# -------------------------------
|
| 16 |
-
TXT_FOLDER = "./out_texts"
|
| 17 |
-
DB_PATH = "./faiss_db"
|
| 18 |
-
os.makedirs(DB_PATH, exist_ok=True)
|
| 19 |
-
os.makedirs(TXT_FOLDER, exist_ok=True)
|
| 20 |
-
|
| 21 |
-
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 22 |
-
if not HF_TOKEN:
|
| 23 |
-
raise ValueError(
|
| 24 |
-
"請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN"
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# -------------------------------
|
| 28 |
-
# 3. 建立或載入向量資料庫
|
| 29 |
-
# -------------------------------
|
| 30 |
-
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 31 |
-
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
| 32 |
-
|
| 33 |
-
if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
|
| 34 |
-
print("載入現有向量資料庫...")
|
| 35 |
-
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
|
| 36 |
-
else:
|
| 37 |
-
print("沒有資料庫,開始建立新向量資料庫...")
|
| 38 |
-
txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
|
| 39 |
-
if not txt_files:
|
| 40 |
-
print("注意:TXT 資料夾中沒有任何文字檔,向量資料庫將為空。")
|
| 41 |
-
docs = []
|
| 42 |
-
for filepath in txt_files:
|
| 43 |
-
with open(filepath, "r", encoding="utf-8") as f:
|
| 44 |
-
docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)}))
|
| 45 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 46 |
-
split_docs = splitter.split_documents(docs)
|
| 47 |
-
db = FAISS.from_documents(split_docs, embeddings_model)
|
| 48 |
-
db.save_local(DB_PATH)
|
| 49 |
-
|
| 50 |
-
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 51 |
-
|
| 52 |
-
# -------------------------------
|
| 53 |
-
# 4. 定義 REST API 呼叫函數
|
| 54 |
-
# -------------------------------
|
| 55 |
-
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 56 |
-
|
| 57 |
-
def call_hf_inference(model_name, prompt, max_new_tokens=512):
|
| 58 |
-
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 59 |
-
payload = {
|
| 60 |
-
"inputs": prompt,
|
| 61 |
-
"parameters": {"max_new_tokens": max_new_tokens}
|
| 62 |
-
}
|
| 63 |
-
try:
|
| 64 |
-
response = requests.post(api_url, headers=HEADERS, json=payload, timeout=180) # timeout 拉長
|
| 65 |
-
response.raise_for_status()
|
| 66 |
-
data = response.json()
|
| 67 |
-
if isinstance(data, list) and "generated_text" in data[0]:
|
| 68 |
-
return data[0]["generated_text"]
|
| 69 |
-
elif isinstance(data, dict) and "error" in data:
|
| 70 |
-
return f"(生成失敗:{data['error']},請嘗試換一個模型)"
|
| 71 |
-
else:
|
| 72 |
-
return str(data)
|
| 73 |
-
except requests.exceptions.ReadTimeout:
|
| 74 |
-
return "(生成失敗:等待超時,請嘗試換小一點的模型或增加 timeout 秒數)"
|
| 75 |
-
except Exception as e:
|
| 76 |
-
return f"(生成失敗:{e})"
|
| 77 |
-
|
| 78 |
-
# -------------------------------
|
| 79 |
-
# 5. 查詢 API 剩餘額度
|
| 80 |
-
# -------------------------------
|
| 81 |
-
def get_hf_rate_limit():
|
| 82 |
-
try:
|
| 83 |
-
r = requests.get("https://huggingface.co/api/whoami", headers=HEADERS)
|
| 84 |
-
r.raise_for_status()
|
| 85 |
-
data = r.json()
|
| 86 |
-
remaining = data.get("rate_limit", {}).get("remaining", "未知")
|
| 87 |
-
return f"本小時剩餘 API 次數:約 {remaining}"
|
| 88 |
-
except Exception:
|
| 89 |
-
return "無法取得 API 速率資訊"
|
| 90 |
-
|
| 91 |
-
# -------------------------------
|
| 92 |
-
# 6. 生成文章(即時進度)
|
| 93 |
-
# -------------------------------
|
| 94 |
def generate_article_progress(query, model_name, segments=5):
|
| 95 |
docx_file = "/tmp/generated_article.docx"
|
| 96 |
doc = DocxDocument()
|
| 97 |
doc.add_heading(query, level=1)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
all_text = []
|
| 100 |
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
|
| 101 |
|
| 102 |
for i in range(int(segments)):
|
| 103 |
-
paragraph =
|
| 104 |
all_text.append(paragraph)
|
| 105 |
doc.add_paragraph(paragraph)
|
| 106 |
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
|
| 107 |
|
| 108 |
-
yield "\n\n".join(all_text), None
|
| 109 |
|
| 110 |
doc.save(docx_file)
|
| 111 |
-
|
| 112 |
-
yield f"{rate_info}\n\n" + "\n\n".join(all_text), docx_file
|
| 113 |
|
| 114 |
# -------------------------------
|
| 115 |
-
#
|
| 116 |
# -------------------------------
|
| 117 |
with gr.Blocks() as demo:
|
| 118 |
-
gr.Markdown("# 佛教經論 RAG 系統 (
|
| 119 |
-
gr.Markdown("使用 Hugging Face
|
| 120 |
|
| 121 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 122 |
model_dropdown = gr.Dropdown(
|
| 123 |
-
choices=
|
| 124 |
-
|
| 125 |
-
"facebook/bart-large-cnn",
|
| 126 |
-
"bigscience/bloom-560m",
|
| 127 |
-
"bigscience/bloomz-560m"
|
| 128 |
-
],
|
| 129 |
-
value="bigscience/bloomz-560m", # 預設比較聽得懂指令
|
| 130 |
label="選擇生成模型"
|
| 131 |
)
|
| 132 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
| 133 |
-
output_text = gr.Textbox(label="生成文章
|
| 134 |
output_file = gr.File(label="下載 DOCX")
|
|
|
|
| 135 |
|
| 136 |
btn = gr.Button("生成文章")
|
| 137 |
btn.click(
|
| 138 |
generate_article_progress,
|
| 139 |
inputs=[query_input, model_dropdown, segments_input],
|
| 140 |
-
outputs=[output_text, output_file]
|
| 141 |
)
|
| 142 |
|
| 143 |
# -------------------------------
|
| 144 |
-
#
|
| 145 |
# -------------------------------
|
| 146 |
if __name__ == "__main__":
|
| 147 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
# -------------------------------
|
| 2 |
+
# 5. 生成文章(即時進度)
|
| 3 |
# -------------------------------
|
| 4 |
+
def pick_model_auto(segments):
|
| 5 |
+
"""根據段落數自動挑選模型"""
|
| 6 |
+
if segments <= 3:
|
| 7 |
+
return "Gemma-2B"
|
| 8 |
+
elif segments <= 6:
|
| 9 |
+
return "BTLM-3B-8K"
|
| 10 |
+
else:
|
| 11 |
+
return "gpt-oss-20B"
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def generate_article_progress(query, model_name, segments=5):
|
| 14 |
docx_file = "/tmp/generated_article.docx"
|
| 15 |
doc = DocxDocument()
|
| 16 |
doc.add_heading(query, level=1)
|
| 17 |
|
| 18 |
+
# 自動挑模型
|
| 19 |
+
if model_name == "Auto":
|
| 20 |
+
selected_model = pick_model_auto(int(segments))
|
| 21 |
+
else:
|
| 22 |
+
selected_model = model_name
|
| 23 |
+
print(f"👉 使用模型: {selected_model}")
|
| 24 |
+
|
| 25 |
all_text = []
|
| 26 |
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
|
| 27 |
|
| 28 |
for i in range(int(segments)):
|
| 29 |
+
paragraph = call_local_inference(selected_model, prompt)
|
| 30 |
all_text.append(paragraph)
|
| 31 |
doc.add_paragraph(paragraph)
|
| 32 |
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
|
| 33 |
|
| 34 |
+
yield "\n\n".join(all_text), None, f"本次使用模型:{selected_model}"
|
| 35 |
|
| 36 |
doc.save(docx_file)
|
| 37 |
+
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{selected_model}"
|
|
|
|
| 38 |
|
| 39 |
# -------------------------------
|
| 40 |
+
# 6. Gradio 介面
|
| 41 |
# -------------------------------
|
| 42 |
with gr.Blocks() as demo:
|
| 43 |
+
gr.Markdown("# 佛教經論 RAG 系統 (本地推論 + Auto 模型選擇)")
|
| 44 |
+
gr.Markdown("使用 Hugging Face Space + FAISS RAG,本地模型推論,不消耗 API 額度。")
|
| 45 |
|
| 46 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 47 |
model_dropdown = gr.Dropdown(
|
| 48 |
+
choices=list(MODEL_MAP.keys()),
|
| 49 |
+
value="Auto", # 預設自動模式
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
label="選擇生成模型"
|
| 51 |
)
|
| 52 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
| 53 |
+
output_text = gr.Textbox(label="生成文章")
|
| 54 |
output_file = gr.File(label="下載 DOCX")
|
| 55 |
+
model_used_text = gr.Textbox(label="實際使用模型", interactive=False)
|
| 56 |
|
| 57 |
btn = gr.Button("生成文章")
|
| 58 |
btn.click(
|
| 59 |
generate_article_progress,
|
| 60 |
inputs=[query_input, model_dropdown, segments_input],
|
| 61 |
+
outputs=[output_text, output_file, model_used_text]
|
| 62 |
)
|
| 63 |
|
| 64 |
# -------------------------------
|
| 65 |
+
# 7. 啟動 Gradio
|
| 66 |
# -------------------------------
|
| 67 |
if __name__ == "__main__":
|
| 68 |
demo.launch()
|