# app.py # ------------------------------- # 1. 套件載入 # ------------------------------- import os, glob, requests from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings from docx import Document as DocxDocument import gradio as gr # ------------------------------- # 2. 環境變數與資料路徑 # ------------------------------- TXT_FOLDER = "./out_texts" DB_PATH = "./faiss_db" os.makedirs(DB_PATH, exist_ok=True) os.makedirs(TXT_FOLDER, exist_ok=True) HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") if not HF_TOKEN: raise ValueError( "請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN" ) # ------------------------------- # 3. 建立或載入向量資料庫 # ------------------------------- EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2" embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME) if os.path.exists(os.path.join(DB_PATH, "index.faiss")): print("載入現有向量資料庫...") db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True) else: print("沒有資料庫,開始建立新向量資料庫...") txt_files = glob.glob(f"{TXT_FOLDER}/*.txt") if not txt_files: print("注意:TXT 資料夾中沒有任何文字檔,向量資料庫將為空。") docs = [] for filepath in txt_files: with open(filepath, "r", encoding="utf-8") as f: docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)})) splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) split_docs = splitter.split_documents(docs) db = FAISS.from_documents(split_docs, embeddings_model) db.save_local(DB_PATH) retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5}) # ------------------------------- # 4. 定義 REST API 呼叫函數 # ------------------------------- HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} def call_hf_inference(model_name, prompt, max_new_tokens=512): api_url = f"https://api-inference.huggingface.co/models/{model_name}" payload = { "inputs": prompt, "parameters": {"max_new_tokens": max_new_tokens} } try: response = requests.post(api_url, headers=HEADERS, json=payload, timeout=180) # timeout 拉長 response.raise_for_status() data = response.json() if isinstance(data, list) and "generated_text" in data[0]: return data[0]["generated_text"] elif isinstance(data, dict) and "error" in data: return f"(生成失敗:{data['error']},請嘗試換一個模型)" else: return str(data) except requests.exceptions.ReadTimeout: return "(生成失敗:等待超時,請嘗試換小一點的模型或增加 timeout 秒數)" except Exception as e: return f"(生成失敗:{e})" # ------------------------------- # 5. 查詢 API 剩餘額度 # ------------------------------- def get_hf_rate_limit(): try: r = requests.get("https://huggingface.co/api/whoami", headers=HEADERS) r.raise_for_status() data = r.json() remaining = data.get("rate_limit", {}).get("remaining", "未知") return f"本小時剩餘 API 次數:約 {remaining}" except Exception: return "無法取得 API 速率資訊" # ------------------------------- # 6. 生成文章(即時進度) # ------------------------------- def generate_article_progress(query, model_name, segments=5): docx_file = "/tmp/generated_article.docx" doc = DocxDocument() doc.add_heading(query, level=1) all_text = [] prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。" for i in range(int(segments)): paragraph = call_hf_inference(model_name, prompt) all_text.append(paragraph) doc.add_paragraph(paragraph) prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:" yield "\n\n".join(all_text), None doc.save(docx_file) rate_info = get_hf_rate_limit() yield f"{rate_info}\n\n" + "\n\n".join(all_text), docx_file # ------------------------------- # 7. Gradio 介面 # ------------------------------- with gr.Blocks() as demo: gr.Markdown("# 佛教經論 RAG 系統 (HF API)") gr.Markdown("使用 Hugging Face REST API + FAISS RAG,生成文章並提示 API 剩餘額度。") query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題") model_dropdown = gr.Dropdown( choices=[ "gpt2", "facebook/bart-large-cnn", "bigscience/bloom-560m", "bigscience/bloomz-560m" ], value="bigscience/bloomz-560m", # 預設比較聽得懂指令 label="選擇生成模型" ) segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數") output_text = gr.Textbox(label="生成文章 + API 剩餘次數") output_file = gr.File(label="下載 DOCX") btn = gr.Button("生成文章") btn.click( generate_article_progress, inputs=[query_input, model_dropdown, segments_input], outputs=[output_text, output_file] ) # ------------------------------- # 8. 啟動 Gradio(Hugging Face Space 適用) # ------------------------------- if __name__ == "__main__": demo.launch()