Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.distributed as dist | |
| from torch.nn.modules import Module | |
| from torch.autograd import Variable | |
| def _flatten_dense_tensors(tensors): | |
| """Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of | |
| same dense type. | |
| Since inputs are dense, the resulting tensor will be a concatenated 1D | |
| buffer. Element-wise operation on this buffer will be equivalent to | |
| operating individually. | |
| Arguments: | |
| tensors (Iterable[Tensor]): dense tensors to flatten. | |
| Returns: | |
| A contiguous 1D buffer containing input tensors. | |
| """ | |
| if len(tensors) == 1: | |
| return tensors[0].contiguous().view(-1) | |
| flat = torch.cat([t.contiguous().view(-1) for t in tensors], dim=0) | |
| return flat | |
| def _unflatten_dense_tensors(flat, tensors): | |
| """View a flat buffer using the sizes of tensors. Assume that tensors are of | |
| same dense type, and that flat is given by _flatten_dense_tensors. | |
| Arguments: | |
| flat (Tensor): flattened dense tensors to unflatten. | |
| tensors (Iterable[Tensor]): dense tensors whose sizes will be used to | |
| unflatten flat. | |
| Returns: | |
| Unflattened dense tensors with sizes same as tensors and values from | |
| flat. | |
| """ | |
| outputs = [] | |
| offset = 0 | |
| for tensor in tensors: | |
| numel = tensor.numel() | |
| outputs.append(flat.narrow(0, offset, numel).view_as(tensor)) | |
| offset += numel | |
| return tuple(outputs) | |
| ''' | |
| This version of DistributedDataParallel is designed to be used in conjunction with the multiproc.py | |
| launcher included with this example. It assumes that your run is using multiprocess with 1 | |
| GPU/process, that the model is on the correct device, and that torch.set_device has been | |
| used to set the device. | |
| Parameters are broadcasted to the other processes on initialization of DistributedDataParallel, | |
| and will be allreduced at the finish of the backward pass. | |
| ''' | |
| class DistributedDataParallel(Module): | |
| def __init__(self, module): | |
| super(DistributedDataParallel, self).__init__() | |
| # fallback for PyTorch 0.3 | |
| if not hasattr(dist, '_backend'): | |
| self.warn_on_half = True | |
| else: | |
| self.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False | |
| self.module = module | |
| for p in self.module.state_dict().values(): | |
| if not torch.is_tensor(p): | |
| continue | |
| dist.broadcast(p, 0) | |
| def allreduce_params(): | |
| if(self.needs_reduction): | |
| self.needs_reduction = False | |
| buckets = {} | |
| for param in self.module.parameters(): | |
| if param.requires_grad and param.grad is not None: | |
| tp = type(param.data) | |
| if tp not in buckets: | |
| buckets[tp] = [] | |
| buckets[tp].append(param) | |
| if self.warn_on_half: | |
| if torch.cuda.HalfTensor in buckets: | |
| print("WARNING: gloo dist backend for half parameters may be extremely slow." + | |
| " It is recommended to use the NCCL backend in this case. This currently requires" + | |
| "PyTorch built from top of tree master.") | |
| self.warn_on_half = False | |
| for tp in buckets: | |
| bucket = buckets[tp] | |
| grads = [param.grad.data for param in bucket] | |
| coalesced = _flatten_dense_tensors(grads) | |
| dist.all_reduce(coalesced) | |
| coalesced /= dist.get_world_size() | |
| for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): | |
| buf.copy_(synced) | |
| for param in list(self.module.parameters()): | |
| def allreduce_hook(*unused): | |
| param._execution_engine.queue_callback(allreduce_params) | |
| if param.requires_grad: | |
| param.register_hook(allreduce_hook) | |
| def forward(self, *inputs, **kwargs): | |
| self.needs_reduction = True | |
| return self.module(*inputs, **kwargs) | |
| ''' | |
| def _sync_buffers(self): | |
| buffers = list(self.module._all_buffers()) | |
| if len(buffers) > 0: | |
| # cross-node buffer sync | |
| flat_buffers = _flatten_dense_tensors(buffers) | |
| dist.broadcast(flat_buffers, 0) | |
| for buf, synced in zip(buffers, _unflatten_dense_tensors(flat_buffers, buffers)): | |
| buf.copy_(synced) | |
| def train(self, mode=True): | |
| # Clear NCCL communicator and CUDA event cache of the default group ID, | |
| # These cache will be recreated at the later call. This is currently a | |
| # work-around for a potential NCCL deadlock. | |
| if dist._backend == dist.dist_backend.NCCL: | |
| dist._clear_group_cache() | |
| super(DistributedDataParallel, self).train(mode) | |
| self.module.train(mode) | |
| ''' | |
| ''' | |
| Modifies existing model to do gradient allreduce, but doesn't change class | |
| so you don't need "module" | |
| ''' | |
| def apply_gradient_allreduce(module): | |
| if not hasattr(dist, '_backend'): | |
| module.warn_on_half = True | |
| else: | |
| module.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False | |
| for p in module.state_dict().values(): | |
| if not torch.is_tensor(p): | |
| continue | |
| dist.broadcast(p, 0) | |
| def allreduce_params(): | |
| if module.needs_reduction: | |
| module.needs_reduction = False | |
| buckets = {} | |
| for param in module.parameters(): | |
| if param.requires_grad and param.grad is not None: | |
| tp = type(param.data) | |
| if tp not in buckets: | |
| buckets[tp] = [] | |
| buckets[tp].append(param) | |
| if module.warn_on_half: | |
| if torch.cuda.HalfTensor in buckets: | |
| print("WARNING: gloo dist backend for half parameters may be extremely slow." + | |
| " It is recommended to use the NCCL backend in this case. This currently requires" + | |
| "PyTorch built from top of tree master.") | |
| module.warn_on_half = False | |
| for tp in buckets: | |
| bucket = buckets[tp] | |
| grads = [param.grad.data for param in bucket] | |
| coalesced = _flatten_dense_tensors(grads) | |
| dist.all_reduce(coalesced) | |
| coalesced /= dist.get_world_size() | |
| for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): | |
| buf.copy_(synced) | |
| for param in list(module.parameters()): | |
| def allreduce_hook(*unused): | |
| Variable._execution_engine.queue_callback(allreduce_params) | |
| if param.requires_grad: | |
| param.register_hook(allreduce_hook) | |
| def set_needs_reduction(self, input, output): | |
| self.needs_reduction = True | |
| module.register_forward_hook(set_needs_reduction) | |
| return module | |