Spaces:
Runtime error
Runtime error
| import random | |
| import torch.nn.functional as F | |
| from tensorboardX import SummaryWriter | |
| from plotting_utils import plot_alignment_to_numpy, plot_gst_scores_to_numpy, plot_spectrogram_to_numpy | |
| from plotting_utils import plot_gate_outputs_to_numpy | |
| class Tacotron2Logger(SummaryWriter): | |
| def __init__(self, logdir): | |
| super(Tacotron2Logger, self).__init__(logdir) | |
| def log_training(self, reduced_loss, grad_norm, learning_rate, duration, | |
| iteration): | |
| self.add_scalar("training.loss", reduced_loss, iteration) | |
| self.add_scalar("grad.norm", grad_norm, iteration) | |
| self.add_scalar("learning.rate", learning_rate, iteration) | |
| self.add_scalar("duration", duration, iteration) | |
| def log_validation(self, reduced_loss, model, y, y_pred, gst_scores, iteration): | |
| self.add_scalar("validation.loss", reduced_loss, iteration) | |
| _, mel_outputs, gate_outputs, alignments, _ = y_pred | |
| mel_targets, gate_targets = y | |
| # plot distribution of parameters | |
| for tag, value in model.named_parameters(): | |
| tag = tag.replace('.', '/') | |
| self.add_histogram(tag, value.data.cpu().numpy(), iteration) | |
| # plot alignment, mel target and predicted, gate target and predicted | |
| idx = random.randint(0, alignments.size(0) - 1) | |
| align_idx = alignments[idx].data.cpu().numpy().T | |
| gst_scores = gst_scores.data.cpu().numpy().T | |
| # print("Validation GST scores before plotting to tensorboard: {}".format(gst_scores.shape)) | |
| meltarg_idx = mel_targets[idx].data.cpu().numpy() | |
| melout_idx = mel_outputs[idx].data.cpu().numpy() | |
| self.add_image("alignment", plot_alignment_to_numpy(align_idx), iteration) | |
| self.add_image("gst_scores", plot_gst_scores_to_numpy(gst_scores), iteration) | |
| self.add_image("mel_target", plot_spectrogram_to_numpy(meltarg_idx), iteration) | |
| self.add_image("mel_predicted", plot_spectrogram_to_numpy(melout_idx), iteration) | |
| self.add_image( | |
| "gate", | |
| plot_gate_outputs_to_numpy( | |
| gate_targets[idx].data.cpu().numpy(), | |
| F.sigmoid(gate_outputs[idx]).data.cpu().numpy()), | |
| iteration) | |