Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import copy | |
| import itertools | |
| import logging | |
| import numpy as np | |
| import pickle | |
| import random | |
| import torch.utils.data as data | |
| from torch.utils.data.sampler import Sampler | |
| from detectron2.utils.serialize import PicklableWrapper | |
| __all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"] | |
| class MapDataset(data.Dataset): | |
| """ | |
| Map a function over the elements in a dataset. | |
| Args: | |
| dataset: a dataset where map function is applied. | |
| map_func: a callable which maps the element in dataset. map_func is | |
| responsible for error handling, when error happens, it needs to | |
| return None so the MapDataset will randomly use other | |
| elements from the dataset. | |
| """ | |
| def __init__(self, dataset, map_func): | |
| self._dataset = dataset | |
| self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work | |
| self._rng = random.Random(42) | |
| self._fallback_candidates = set(range(len(dataset))) | |
| def __len__(self): | |
| return len(self._dataset) | |
| def __getitem__(self, idx): | |
| retry_count = 0 | |
| cur_idx = int(idx) | |
| while True: | |
| data = self._map_func(self._dataset[cur_idx]) | |
| if data is not None: | |
| self._fallback_candidates.add(cur_idx) | |
| return data | |
| # _map_func fails for this idx, use a random new index from the pool | |
| retry_count += 1 | |
| self._fallback_candidates.discard(cur_idx) | |
| cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0] | |
| if retry_count >= 3: | |
| logger = logging.getLogger(__name__) | |
| logger.warning( | |
| "Failed to apply `_map_func` for idx: {}, retry count: {}".format( | |
| idx, retry_count | |
| ) | |
| ) | |
| class DatasetFromList(data.Dataset): | |
| """ | |
| Wrap a list to a torch Dataset. It produces elements of the list as data. | |
| """ | |
| def __init__(self, lst: list, copy: bool = True, serialize: bool = True): | |
| """ | |
| Args: | |
| lst (list): a list which contains elements to produce. | |
| copy (bool): whether to deepcopy the element when producing it, | |
| so that the result can be modified in place without affecting the | |
| source in the list. | |
| serialize (bool): whether to hold memory using serialized objects, when | |
| enabled, data loader workers can use shared RAM from master | |
| process instead of making a copy. | |
| """ | |
| self._lst = lst | |
| self._copy = copy | |
| self._serialize = serialize | |
| def _serialize(data): | |
| buffer = pickle.dumps(data, protocol=-1) | |
| return np.frombuffer(buffer, dtype=np.uint8) | |
| if self._serialize: | |
| logger = logging.getLogger(__name__) | |
| logger.info( | |
| "Serializing {} elements to byte tensors and concatenating them all ...".format( | |
| len(self._lst) | |
| ) | |
| ) | |
| self._lst = [_serialize(x) for x in self._lst] | |
| self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64) | |
| self._addr = np.cumsum(self._addr) | |
| self._lst = np.concatenate(self._lst) | |
| logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024 ** 2)) | |
| def __len__(self): | |
| if self._serialize: | |
| return len(self._addr) | |
| else: | |
| return len(self._lst) | |
| def __getitem__(self, idx): | |
| if self._serialize: | |
| start_addr = 0 if idx == 0 else self._addr[idx - 1].item() | |
| end_addr = self._addr[idx].item() | |
| bytes = memoryview(self._lst[start_addr:end_addr]) | |
| return pickle.loads(bytes) | |
| elif self._copy: | |
| return copy.deepcopy(self._lst[idx]) | |
| else: | |
| return self._lst[idx] | |
| class ToIterableDataset(data.IterableDataset): | |
| """ | |
| Convert an old indices-based (also called map-style) dataset | |
| to an iterable-style dataset. | |
| """ | |
| def __init__(self, dataset, sampler): | |
| """ | |
| Args: | |
| dataset (torch.utils.data.Dataset): an old-style dataset with ``__getitem__`` | |
| sampler (torch.utils.data.sampler.Sampler): a cheap iterable that produces indices | |
| to be applied on ``dataset``. | |
| """ | |
| assert not isinstance(dataset, data.IterableDataset), dataset | |
| assert isinstance(sampler, Sampler), sampler | |
| self.dataset = dataset | |
| self.sampler = sampler | |
| def __iter__(self): | |
| worker_info = data.get_worker_info() | |
| if worker_info is None or worker_info.num_workers == 1: | |
| for idx in self.sampler: | |
| yield self.dataset[idx] | |
| else: | |
| # With map-style dataset, `DataLoader(dataset, sampler)` runs the | |
| # sampler in main process only. But `DataLoader(ToIterableDataset(dataset, sampler))` | |
| # will run sampler in every of the N worker and only keep 1/N of the ids on each | |
| # worker. The assumption is that sampler is cheap to iterate and it's fine to discard | |
| # ids in workers. | |
| for idx in itertools.islice( | |
| self.sampler, worker_info.id, None, worker_info.num_workers | |
| ): | |
| yield self.dataset[idx] | |
| class AspectRatioGroupedDataset(data.IterableDataset): | |
| """ | |
| Batch data that have similar aspect ratio together. | |
| In this implementation, images whose aspect ratio < (or >) 1 will | |
| be batched together. | |
| This improves training speed because the images then need less padding | |
| to form a batch. | |
| It assumes the underlying dataset produces dicts with "width" and "height" keys. | |
| It will then produce a list of original dicts with length = batch_size, | |
| all with similar aspect ratios. | |
| """ | |
| def __init__(self, dataset, batch_size): | |
| """ | |
| Args: | |
| dataset: an iterable. Each element must be a dict with keys | |
| "width" and "height", which will be used to batch data. | |
| batch_size (int): | |
| """ | |
| self.dataset = dataset | |
| self.batch_size = batch_size | |
| self._buckets = [[] for _ in range(2)] | |
| # Hard-coded two aspect ratio groups: w > h and w < h. | |
| # Can add support for more aspect ratio groups, but doesn't seem useful | |
| def __iter__(self): | |
| for d in self.dataset: | |
| w, h = d["width"], d["height"] | |
| bucket_id = 0 if w > h else 1 | |
| bucket = self._buckets[bucket_id] | |
| bucket.append(d) | |
| if len(bucket) == self.batch_size: | |
| yield bucket[:] | |
| del bucket[:] | |