Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import logging | |
| import os | |
| from fvcore.common.timer import Timer | |
| from detectron2.data import DatasetCatalog, MetadataCatalog | |
| from detectron2.structures import BoxMode | |
| from detectron2.utils.file_io import PathManager | |
| from .builtin_meta import _get_coco_instances_meta | |
| from .lvis_v0_5_categories import LVIS_CATEGORIES as LVIS_V0_5_CATEGORIES | |
| from .lvis_v1_categories import LVIS_CATEGORIES as LVIS_V1_CATEGORIES | |
| import torch | |
| import numpy as np | |
| """ | |
| This file contains functions to parse LVIS-format annotations into dicts in the | |
| "Detectron2 format". | |
| """ | |
| logger = logging.getLogger(__name__) | |
| __all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"] | |
| def register_lvis_instances(name, metadata, json_file, image_root): | |
| """ | |
| Register a dataset in LVIS's json annotation format for instance detection and segmentation. | |
| Args: | |
| name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train". | |
| metadata (dict): extra metadata associated with this dataset. It can be an empty dict. | |
| json_file (str): path to the json instance annotation file. | |
| image_root (str or path-like): directory which contains all the images. | |
| """ | |
| DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name)) | |
| MetadataCatalog.get(name).set( | |
| json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata | |
| ) | |
| def load_lvis_json_original(json_file, image_root, dataset_name=None, filter_open_cls=True, clip_gt_crop=True, max_gt_per_img=500): | |
| """ | |
| Load a json file in LVIS's annotation format. | |
| Args: | |
| json_file (str): full path to the LVIS json annotation file. | |
| image_root (str): the directory where the images in this json file exists. | |
| dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train"). | |
| If provided, this function will put "thing_classes" into the metadata | |
| associated with this dataset. | |
| filter_open_cls: open-set setting, filter the open-set categories during training | |
| clip_gt_crop: must filter images with empty annotations or too many GT bbox, | |
| even if in testing (eg, use CLIP on GT regions) | |
| Returns: | |
| list[dict]: a list of dicts in Detectron2 standard format. (See | |
| `Using Custom Datasets </tutorials/datasets.html>`_ ) | |
| Notes: | |
| 1. This function does not read the image files. | |
| The results do not have the "image" field. | |
| """ | |
| from lvis import LVIS | |
| if 'train' in dataset_name: #'zeroshot' in dataset_name and 'train' in dataset_name: # openset setting, filter the novel classes during training | |
| filter_open_cls = True | |
| else: | |
| filter_open_cls = False | |
| json_file = PathManager.get_local_path(json_file) | |
| timer = Timer() | |
| lvis_api = LVIS(json_file) | |
| if timer.seconds() > 1: | |
| logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) | |
| if dataset_name is not None: | |
| meta = get_lvis_instances_meta(dataset_name) | |
| MetadataCatalog.get(dataset_name).set(**meta) | |
| # sort indices for reproducible results | |
| img_ids = sorted(lvis_api.imgs.keys()) | |
| # imgs is a list of dicts, each looks something like: | |
| # {'license': 4, | |
| # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', | |
| # 'file_name': 'COCO_val2014_000000001268.jpg', | |
| # 'height': 427, | |
| # 'width': 640, | |
| # 'date_captured': '2013-11-17 05:57:24', | |
| # 'id': 1268} | |
| imgs = lvis_api.load_imgs(img_ids) | |
| # anns is a list[list[dict]], where each dict is an annotation | |
| # record for an object. The inner list enumerates the objects in an image | |
| # and the outer list enumerates over images. Example of anns[0]: | |
| # [{'segmentation': [[192.81, | |
| # 247.09, | |
| # ... | |
| # 219.03, | |
| # 249.06]], | |
| # 'area': 1035.749, | |
| # 'image_id': 1268, | |
| # 'bbox': [192.81, 224.8, 74.73, 33.43], | |
| # 'category_id': 16, | |
| # 'id': 42986}, | |
| # ...] | |
| anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | |
| # Sanity check that each annotation has a unique id | |
| ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | |
| assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique".format( | |
| json_file | |
| ) | |
| imgs_anns = list(zip(imgs, anns)) | |
| logger.info("Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file)) | |
| def get_file_name(img_root, img_dict): | |
| # Determine the path including the split folder ("train2017", "val2017", "test2017") from | |
| # the coco_url field. Example: | |
| # 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg' | |
| split_folder, file_name = img_dict["coco_url"].split("/")[-2:] | |
| return os.path.join(img_root + split_folder, file_name) | |
| dataset_dicts = [] | |
| cls_type_dict = {cls_meta['id']: cls_meta['frequency'] for cls_meta in lvis_api.dataset['categories']} # map cls id to cls type | |
| area_dict = {'r': [], 'c': [], 'f': []} # calculate box area for each type of class | |
| # import os | |
| # from PIL import Image | |
| # custom_img_path = 'datasets/epic_sample_frames' | |
| # custom_img_list = [os.path.join(custom_img_path, item) for item in os.listdir(custom_img_path)] | |
| # cnt = 0 | |
| for (img_dict, anno_dict_list) in imgs_anns: | |
| record = {} | |
| record["file_name"] = get_file_name(image_root, img_dict) | |
| # record["file_name"] = custom_img_list[cnt]; cnt += 1; | |
| # if cnt == 46: | |
| # break # get_file_name(image_root, img_dict) | |
| # img_file = Image.open(record["file_name"]) | |
| record["height"] = img_dict["height"] | |
| record["width"] = img_dict["width"] | |
| # record["height"] = img_file.size[1] # img_dict["height"] | |
| # record["width"] = img_file.size[0] # img_dict["width"] | |
| record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", []) | |
| record["neg_category_ids"] = img_dict.get("neg_category_ids", []) | |
| image_id = record["image_id"] = img_dict["id"] | |
| objs = [] | |
| for anno in anno_dict_list: | |
| # Check that the image_id in this annotation is the same as | |
| # the image_id we're looking at. | |
| # This fails only when the data parsing logic or the annotation file is buggy. | |
| assert anno["image_id"] == image_id | |
| obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} | |
| # LVIS data loader can be used to load COCO dataset categories. In this case `meta` | |
| # variable will have a field with COCO-specific category mapping. | |
| if dataset_name is not None and "thing_dataset_id_to_contiguous_id" in meta: | |
| obj["category_id"] = meta["thing_dataset_id_to_contiguous_id"][anno["category_id"]] | |
| else: | |
| obj["category_id"] = anno["category_id"] - 1 # Convert 1-indexed to 0-indexed | |
| obj['frequency'] = cls_type_dict[anno["category_id"]] # used for open-set filtering | |
| if filter_open_cls: # filter categories for open-set training | |
| if obj['frequency'] == 'r': | |
| continue | |
| area_dict[obj['frequency']].append(anno["bbox"][2] * anno["bbox"][3]) | |
| segm = anno["segmentation"] # list[list[float]] | |
| # filter out invalid polygons (< 3 points) | |
| valid_segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] | |
| assert len(segm) == len( | |
| valid_segm | |
| ), "Annotation contains an invalid polygon with < 3 points" | |
| assert len(segm) > 0 | |
| obj["segmentation"] = segm | |
| objs.append(obj) | |
| if (filter_open_cls or clip_gt_crop) and len(objs) == 0: # no annotation for this image | |
| continue | |
| record["annotations"] = objs | |
| dataset_dicts.append(record) | |
| # For the training in open-set setting, map original category id to new category id number (base categories) | |
| if filter_open_cls: | |
| # get new category id in order | |
| old_to_new = {} | |
| for i in range(len(cls_type_dict)): | |
| if cls_type_dict[i+1] != 'r': # cls_type_dict is 1-indexed | |
| old_to_new[i] = len(old_to_new) | |
| # map annotation to new category id | |
| for record in dataset_dicts: | |
| record.pop('not_exhaustive_category_ids') # won't be used | |
| record.pop('neg_category_ids') # won't be used | |
| for obj in record['annotations']: | |
| obj['category_id'] = old_to_new[obj['category_id']] # 0-indexed id | |
| assert obj['frequency'] != 'r' | |
| logger.info("\n\nModel will be trained in the open-set setting! {} / {} categories are kept.\n".format(len(old_to_new),len(cls_type_dict))) | |
| # calculate box area for each type of class | |
| area_lst = np.array([0, 400, 1600, 2500, 5000, 10000, 22500, 224 * 224, 90000, 160000, 1e8]) | |
| # rare_cls = np.histogram(np.array(area_dict['r']), bins=area_lst)[0] | |
| # common_cls = np.histogram(np.array(area_dict['c']), bins=area_lst)[0] | |
| # freq_cls = np.histogram(np.array(area_dict['f']), bins=area_lst)[0] | |
| # print("rare classes: {}; \ncommon classes: {}; \nfrequent classes: {}".format(rare_cls/rare_cls.sum()*100, common_cls/common_cls.sum()*100, freq_cls/freq_cls.sum()*100)) | |
| # # apply CLIP on GT regions: some images has large number of GT bbox (eg, 759), remove them, otherwise, OOM | |
| if clip_gt_crop: | |
| # len_num = sorted([len(item["annotations"]) for item in dataset_dicts], reverse=True) | |
| dataset_dicts = sorted(dataset_dicts, key=lambda x: len(x["annotations"]), reverse=True) | |
| for record in dataset_dicts: | |
| record["annotations"] = record["annotations"][:max_gt_per_img] # only <10 / 20k images in test have >300 GT boxes | |
| #dataset_dicts = sorted(dataset_dicts, key=lambda x: len(x["annotations"]))[:12] #[12000:14000] # | |
| #dataset_dicts = sorted(dataset_dicts, key=lambda x: len(x["annotations"]))[-1200:-1000] | |
| #eval_cls_acc(dataset_dicts, area_lst) | |
| return dataset_dicts | |
| def load_lvis_json(json_file, image_root, dataset_name=None, filter_open_cls=True, clip_gt_crop=True, max_gt_per_img=500, custom_img_path='datasets/custom_images'): | |
| """ | |
| This is a tentitive function for loading custom images. | |
| Given a folder of images (eg, 'datasets/custom_images'), load their meta data into a dictionary | |
| """ | |
| import os | |
| from PIL import Image | |
| custom_img_list = [os.path.join(custom_img_path, item) for item in os.listdir(custom_img_path)] | |
| dataset_dicts = [] | |
| for f_i, file_name in enumerate(custom_img_list): | |
| record = {} | |
| record["file_name"] = file_name | |
| img_file = Image.open(record["file_name"]) | |
| record["height"] = img_file.size[1] | |
| record["width"] = img_file.size[0] | |
| record["image_id"] = f_i | |
| dataset_dicts.append(record) | |
| return dataset_dicts | |
| def eval_cls_acc(dataset_dicts, area_lst): | |
| #pred_file = '/home/v-yiwuzhong/projects/detectron2-open-set/output/rcnn_gt_crop/vit/instances_predictions.pth' | |
| #pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_rcnn_resnet50_crop_regions_perclassnms/inference/instances_predictions.pth' | |
| #pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_rcnn_vitb32_crop_regions_perclassnms/inference/instances_predictions.pth' | |
| #pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_roifeatmap/inference/instances_predictions.pth' | |
| #pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_supmrcnnbaselinefpn/inference/instances_predictions.pth' | |
| #pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_supmrcnnbaselinec4/inference/instances_predictions.pth' | |
| pred_file = '/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/results/test_CLIP_fast_rcnn_resnet50_e1-3-3gtbox/inference/instances_predictions.pth' | |
| predictions = torch.load(pred_file) | |
| correct = 0 | |
| wrong = 0 | |
| area_threshold = area_lst[1:-1] # np.array([400, 1600, 2500, 5000, 10000, 22500, 224 * 224, 90000, 160000]) | |
| acc_list = [[0, 0] for i in range(area_threshold.shape[0] + 1)] | |
| small_cnt = 0 | |
| for preds, gts in zip(predictions, dataset_dicts): | |
| assert preds['image_id'] == gts['image_id'] # same image | |
| #assert len(preds['instances']) == len(gts['annotations']) | |
| box_seen = {} # keep a set for the predicted boxes that have been checked | |
| for pred, gt in zip(preds['instances'], gts['annotations']): | |
| if pred['bbox'][0] in box_seen: # duplicate box due to perclass NMS | |
| continue | |
| else: | |
| box_seen[pred['bbox'][0]] = 1 | |
| if np.sum(np.array(pred['bbox']) - np.array(gt['bbox'])) < 1.0: # same box | |
| pass | |
| else: # has been NMS and shuffled | |
| for gt in gts['annotations']: | |
| if np.sum(np.array(pred['bbox']) - np.array(gt['bbox'])) < 1.0: # same box | |
| break | |
| assert np.sum(np.array(pred['bbox']) - np.array(gt['bbox'])) < 1.0 # same box | |
| this_area = gt['bbox'][2] * gt['bbox'][3] | |
| block = (area_threshold < this_area).nonzero()[0].shape[0] | |
| if pred['category_id'] == gt['category_id']: # matched | |
| correct += 1 | |
| acc_list[block][0] += 1 | |
| else: | |
| wrong += 1 | |
| acc_list[block][1] += 1 | |
| print("\n\nGot correct {} and wrong {}. Accuracy is {} / {} = {}\n\n".format(correct,wrong,correct,correct+wrong,correct/(correct+wrong))) | |
| block_acc = [100 * acc_list[i][0] / (acc_list[i][0] + acc_list[i][1]) for i in range(len(acc_list))] | |
| block_acc = [round(i, 1) for i in block_acc] | |
| print("Block accuracy: {}".format(block_acc)) | |
| block_num = [acc_list[i][0] + acc_list[i][1] for i in range(len(acc_list))] | |
| block_num = list(block_num / np.sum(block_num) * 100) | |
| block_num = [round(i, 1) for i in block_num] | |
| print("Block #instances: {}".format(block_num)) | |
| return | |
| def get_lvis_instances_meta(dataset_name): | |
| """ | |
| Load LVIS metadata. | |
| Args: | |
| dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5"). | |
| Returns: | |
| dict: LVIS metadata with keys: thing_classes | |
| """ | |
| if "cocofied" in dataset_name: | |
| return _get_coco_instances_meta() | |
| if "v0.5" in dataset_name: | |
| return _get_lvis_instances_meta_v0_5() | |
| elif "v1" in dataset_name: | |
| return _get_lvis_instances_meta_v1() | |
| raise ValueError("No built-in metadata for dataset {}".format(dataset_name)) | |
| def _get_lvis_instances_meta_v0_5(): | |
| assert len(LVIS_V0_5_CATEGORIES) == 1230 | |
| cat_ids = [k["id"] for k in LVIS_V0_5_CATEGORIES] | |
| assert min(cat_ids) == 1 and max(cat_ids) == len( | |
| cat_ids | |
| ), "Category ids are not in [1, #categories], as expected" | |
| # Ensure that the category list is sorted by id | |
| lvis_categories = sorted(LVIS_V0_5_CATEGORIES, key=lambda x: x["id"]) | |
| thing_classes = [k["synonyms"][0] for k in lvis_categories] | |
| meta = {"thing_classes": thing_classes} | |
| return meta | |
| def _get_lvis_instances_meta_v1(): | |
| assert len(LVIS_V1_CATEGORIES) == 1203 | |
| cat_ids = [k["id"] for k in LVIS_V1_CATEGORIES] | |
| assert min(cat_ids) == 1 and max(cat_ids) == len( | |
| cat_ids | |
| ), "Category ids are not in [1, #categories], as expected" | |
| # Ensure that the category list is sorted by id | |
| lvis_categories = sorted(LVIS_V1_CATEGORIES, key=lambda x: x["id"]) | |
| thing_classes = [k["synonyms"][0] for k in lvis_categories] | |
| meta = {"thing_classes": thing_classes} | |
| return meta | |
| if __name__ == "__main__": | |
| """ | |
| Test the LVIS json dataset loader. | |
| Usage: | |
| python -m detectron2.data.datasets.lvis \ | |
| path/to/json path/to/image_root dataset_name vis_limit | |
| """ | |
| import sys | |
| import numpy as np | |
| from detectron2.utils.logger import setup_logger | |
| from PIL import Image | |
| import detectron2.data.datasets # noqa # add pre-defined metadata | |
| from detectron2.utils.visualizer import Visualizer | |
| logger = setup_logger(name=__name__) | |
| meta = MetadataCatalog.get(sys.argv[3]) | |
| dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3]) | |
| logger.info("Done loading {} samples.".format(len(dicts))) | |
| dirname = "lvis-data-vis" | |
| os.makedirs(dirname, exist_ok=True) | |
| for d in dicts[: int(sys.argv[4])]: | |
| img = np.array(Image.open(d["file_name"])) | |
| visualizer = Visualizer(img, metadata=meta) | |
| vis = visualizer.draw_dataset_dict(d) | |
| fpath = os.path.join(dirname, os.path.basename(d["file_name"])) | |
| vis.save(fpath) | |