Spaces:
Running
Running
| import copy | |
| import glob | |
| import json | |
| import os | |
| # Necessary for `requests`. Without set correct path or empty string it fails during process HTTPS connection with this: [Errno 101] Network is unreachable | |
| if os.path.exists("/etc/ssl/certs/ca-certificates.crt"): | |
| os.environ["CURL_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt" | |
| os.environ["REQUESTS_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt" | |
| else: | |
| os.environ["CURL_CA_BUNDLE"] = "" | |
| os.environ["REQUESTS_CA_BUNDLE"] = "" | |
| print(f"{os.environ.get('CURL_CA_BUNDLE') = }") | |
| print(f"{os.environ.get('REQUESTS_CA_BUNDLE') = }") | |
| import hashlib | |
| import time | |
| import requests | |
| from collections import namedtuple | |
| from xml.sax.saxutils import escape as xmlEscape, quoteattr as xmlQuoteAttr | |
| from threading import Lock | |
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import HfApi, snapshot_download | |
| from compare_significance import SUPPORTED_METRICS | |
| VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"] | |
| api = HfApi() | |
| ORG = "CZLC" | |
| REPO = f"{ORG}/LLM_benchmark_data" | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| TASKS_METADATA_PATH = "./tasks_metadata.json" | |
| MARKDOWN_SPECIAL_CHARACTERS = { | |
| "#": "#", # for usage in xml.sax.saxutils.escape as entities must be first | |
| "\\": "\", | |
| "`": "`", | |
| "*": "*", | |
| "_": "_", | |
| "{": "{", | |
| "}": "}", | |
| "[": "[", | |
| "]": "]", | |
| "(": "(", | |
| ")": ")", | |
| "+": "+", | |
| "-": "-", | |
| ".": ".", | |
| "!": "!", | |
| "=": "=", | |
| "|": "|" | |
| } | |
| def xmlAndMarkdownEscape(text): | |
| return xmlEscape(text, MARKDOWN_SPECIAL_CHARACTERS) | |
| def check_significance_send_task(model_a_path, model_b_path): | |
| url = 'https://czechllm.fit.vutbr.cz/benczechmark-leaderboard/compare_significance/' | |
| # prepare and send request | |
| with ( | |
| open(model_a_path, 'rb') as model_a_fp, | |
| open(model_b_path, 'rb') as model_b_fp, | |
| ): | |
| files = { | |
| 'model_a': model_a_fp, | |
| 'model_b': model_b_fp, | |
| } | |
| response = requests.post(url, files=files, timeout=60 * 5) | |
| # check response | |
| if response.status_code == 202: | |
| result_url = response.url | |
| #task_id = response.json()['task_id'] | |
| elif response.status_code == 429: | |
| raise RuntimeError('Server is too busy. Please try again later.') # TODO: try-except do raise gr.error | |
| else: | |
| raise RuntimeError(f'Failed to submit task. Status code: {response.status_code}') # TODO: try-except do raise gr.error | |
| return result_url | |
| def check_significance_wait_for_result(result_url): | |
| while True: | |
| response = requests.get(result_url, timeout=60 * 5) | |
| if response.status_code == 200: | |
| result = response.json() | |
| break | |
| elif response.status_code == 202: | |
| time.sleep(5) | |
| else: | |
| raise RuntimeError(f'Failed to get result. Status code: {response.status_code}') # TODO: try-except do raise gr.error | |
| if result["state"] == "COMPLETED": | |
| return result['result'] | |
| else: | |
| raise RuntimeError(result['result']['error']) | |
| def check_significance(model_a_path, model_b_path): | |
| result_url = check_significance_send_task(model_a_path, model_b_path) | |
| result = check_significance_wait_for_result(result_url) | |
| return result | |
| pre_submit_lock = Lock() | |
| class _ReadLock: | |
| def __init__(self, lock): | |
| self._lock = lock | |
| self.reading = 0 | |
| def __enter__(self): | |
| with self._lock: | |
| self.reading += 1 | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| with self._lock: | |
| self.reading -= 1 | |
| class ReadWriteLock: | |
| """ | |
| Zámek, který ověří, že nikdo nečte když se zapisuje a že zapisuje pouze jeden | |
| """ | |
| def __init__(self): | |
| self._lock = Lock() | |
| self.ro = _ReadLock(self._lock) | |
| self.rw = self | |
| def __enter__(self): | |
| self._lock.acquire() | |
| while True: | |
| reading = self.ro.reading | |
| if reading > 0: | |
| self._lock.release() | |
| time.sleep(1) | |
| self._lock.acquire() | |
| elif reading < 0: | |
| self._lock.release() | |
| raise RuntimeError() | |
| else: | |
| return | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self._lock.release() | |
| class LeaderboardServer: | |
| def __init__(self): | |
| self.SERVER_ADDRESS = REPO | |
| self.REPO_TYPE = "dataset" | |
| self.TASKS_METADATA = json.load(open(TASKS_METADATA_PATH)) | |
| self.TASKS_CATEGORIES = {self.TASKS_METADATA[task]["category"] for task in self.TASKS_METADATA} | |
| self.TASKS_CATEGORY_OVERALL = "Overall" | |
| self.CATEGORY_TO_TASK_ABBREVIATION_TO_DETAILS = self._prepare_category_to_task_abbr_to_details() | |
| self.var_lock = ReadWriteLock() | |
| self.submission_ids = set() | |
| self.submission_id_to_file = {} # Map submission ids to file paths | |
| self.submission_id_to_model_title = {} | |
| self.submission_id_to_data = {} # Only data (results and metadata) using by leaderboard | |
| self.tournament_results = None | |
| self.results_dataset_local_snapshot_lock = ReadWriteLock() | |
| self.results_dataset_local_snapshot = None | |
| self.pre_submit_lock = pre_submit_lock | |
| self.pre_submit = None | |
| self.update_leaderboard() | |
| self.results_dataset_integrity_check() # Check integrity of the results dataset after (re)start Hugging Face Space | |
| def update_leaderboard(self): | |
| with self.results_dataset_local_snapshot_lock.rw: | |
| self.results_dataset_local_snapshot = snapshot_download( | |
| self.SERVER_ADDRESS, | |
| repo_type=self.REPO_TYPE, | |
| token=HF_TOKEN, | |
| local_dir="./", | |
| ) | |
| self.fetch_existing_models() | |
| tournament_results = self.load_tournament_results() | |
| with self.var_lock.rw: | |
| self.tournament_results = tournament_results | |
| def load_tournament_results(self): | |
| with self.results_dataset_local_snapshot_lock.ro: | |
| metadata_rank_paths = os.path.join(self.results_dataset_local_snapshot, "tournament.json") | |
| if not os.path.exists(metadata_rank_paths): | |
| return {} | |
| with open(metadata_rank_paths) as ranks_file: | |
| results = json.load(ranks_file) | |
| return results | |
| def _prepare_category_to_task_abbr_to_details(self): | |
| tasks_per_category = {} | |
| for task in self.TASKS_METADATA: | |
| task_category = self.TASKS_METADATA[task]["category"] | |
| tasks_per_category.setdefault(task_category, list()).append(task) | |
| category2abbreviation2name = {self.TASKS_CATEGORY_OVERALL: {}} | |
| for category, tasks in tasks_per_category.items(): | |
| abbreviation2name = { | |
| self.TASKS_METADATA[t]["abbreviation"]: ( | |
| self.TASKS_METADATA[t]["abbreviation"], | |
| self.TASKS_METADATA[t]["name"], | |
| self.TASKS_METADATA[t]["source_url"], | |
| ) | |
| for t in tasks | |
| } | |
| sorted_abbreviation2name = dict.fromkeys(sorted(abbreviation2name.keys())) | |
| sorted_abbreviation2name.update(abbreviation2name) | |
| category2abbreviation2name[category] = sorted_abbreviation2name | |
| category2abbreviation2name[self.TASKS_CATEGORY_OVERALL].update(sorted_abbreviation2name) | |
| abbreviation2name = category2abbreviation2name[self.TASKS_CATEGORY_OVERALL] | |
| sorted_abbreviation2name = dict.fromkeys(sorted(abbreviation2name.keys())) | |
| sorted_abbreviation2name.update(abbreviation2name) | |
| category2abbreviation2name[self.TASKS_CATEGORY_OVERALL] = sorted_abbreviation2name | |
| return category2abbreviation2name | |
| def fetch_existing_models(self): | |
| # Models data | |
| submission_ids = set() | |
| submission_id_to_file = {} | |
| submission_id_to_model_title = {} | |
| submission_id_to_data = {} | |
| with self.results_dataset_local_snapshot_lock.ro: | |
| for submission_file in glob.glob(os.path.join(self.results_dataset_local_snapshot, "data") + "/*.json"): | |
| data = json.load(open(submission_file)) | |
| metadata = data.get('metadata') | |
| if metadata is None: | |
| continue | |
| submission_id = metadata["submission_id"] | |
| submission_ids.add(submission_id) | |
| submission_id_to_file[submission_id] = submission_file | |
| submission_id_to_model_title[submission_id] = metadata["team_name"] + "/" + metadata["model_name"] | |
| submission_id_to_data[submission_id] = {"results": data["results"], "metadata": metadata} | |
| with self.var_lock.rw: | |
| self.submission_ids = submission_ids | |
| self.submission_id_to_file = submission_id_to_file | |
| self.submission_id_to_model_title = submission_id_to_model_title | |
| self.submission_id_to_data = submission_id_to_data | |
| def results_dataset_integrity_check(self): | |
| """ | |
| Zkontroluje, že: | |
| - všechny modely byly v duelu se všemi | |
| -- pokud ne, znemožní potvrzení nových submitů a udělá zbývající zápasy | |
| -- kontroluje soubory v adresáři "/data" a soubor "tournament.json" | |
| - v souboru "tournament.json" není `submission_id`, které by nemělo soubor v adresáři "/data" | |
| """ | |
| while True: | |
| with self.pre_submit_lock: | |
| if self.pre_submit == None: | |
| gr.Info('Checking integrity...', duration=15) | |
| self.update_leaderboard() | |
| with self.var_lock.ro: | |
| # Is every `submission_id` in results known? | |
| if self.tournament_results.keys() - self.submission_ids != set(): | |
| pass | |
| # Was every `submission_id` in some match? | |
| elif self.submission_ids - self.tournament_results.keys() != set(): | |
| pass | |
| # Are all competitors known? | |
| elif any( | |
| self.tournament_results[submission_id].keys() - self.submission_ids != set() | |
| for submission_id in self.submission_ids | |
| ): | |
| pass | |
| # Has had every `submission_id` match with all competitors? | |
| elif any( | |
| self.submission_ids - self.tournament_results[submission_id].keys() != set() | |
| for submission_id in self.submission_ids | |
| ): | |
| pass | |
| else: | |
| break | |
| gr.Info('Running tournament...', duration=15) | |
| with self.var_lock.rw: | |
| self.tournament_results = {} | |
| submission_ids_backup = self.submission_ids | |
| self.submission_ids = set() | |
| for submission_id in submission_ids_backup: | |
| with self.var_lock.ro: | |
| file = self.submission_id_to_file[submission_id] | |
| tournament_results = self.start_tournament(submission_id, file) | |
| with self.var_lock.rw: | |
| self.tournament_results = tournament_results | |
| self.submission_ids.add(submission_id) | |
| gr.Info('Uploading tournament results...', duration=5) | |
| if self.tournament_results: | |
| self._upload_tournament_results(self.tournament_results) | |
| break | |
| gr.Info("Waiting in queue...", duration=5) | |
| time.sleep(10) | |
| gr.Info('Integrity of the results dataset is checked', duration=5) | |
| def _model_tournament_table_highlight_true_and_false(x): | |
| df_css = x.copy() | |
| for c in df_css: | |
| for i in range(len(df_css.index)): | |
| if x[c].iloc[i] == True or ">true<" in str(x[c].iloc[i]).lower(): | |
| df_css[c].iloc[i] = 'background-color: rgba(0, 255, 0, 0.1);' | |
| elif x[c].iloc[i] == False or ">false<" in str(x[c].iloc[i]).lower(): | |
| df_css[c].iloc[i] = 'background-color: rgba(255, 0, 0, 0.1);' | |
| else: | |
| df_css[c].iloc[i] = '' | |
| return df_css | |
| def get_model_tournament_table(self, submission_id, category): | |
| if category == self.TASKS_CATEGORY_OVERALL: | |
| return None | |
| model_tournament_table = [] | |
| with self.var_lock.ro: | |
| for competitor_id in self.tournament_results[submission_id].keys() - {submission_id}: # without self | |
| data = self.submission_id_to_data[competitor_id] | |
| match_results = {} | |
| for task in self.tournament_results[submission_id][competitor_id]: | |
| task_category = self.TASKS_METADATA[task]["category"] | |
| if task_category == category: | |
| match_task_result_details = dict.fromkeys(["significant", "p_value"]) # order has impact to sorting DataFrame | |
| match_task_result_details.update(copy.deepcopy(self.tournament_results[submission_id][competitor_id][task])) | |
| match_task_result_details["significant"] = str(match_task_result_details["significant"]).lower() # originaly bool | |
| match_task_result_significant = match_task_result_details["significant"] | |
| match_task_result_details = "\n".join(f"{k}: {v}" for k, v in match_task_result_details.items()) | |
| match_results[task] = f'<abbr title={xmlQuoteAttr(match_task_result_details)}>{match_task_result_significant}</abbr>' | |
| model_link = data["metadata"]["link_to_model"] | |
| model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"] | |
| model_title_abbr_team_name = self.abbreviate(data["metadata"]["team_name"], 28) | |
| model_title_abbr_model_name = self.abbreviate(data["metadata"]["model_name"], 28) | |
| model_title_abbr_html = f'<div style="font-size: 10px;">{xmlAndMarkdownEscape(model_title_abbr_team_name)}</div>{xmlAndMarkdownEscape(model_title_abbr_model_name)}' | |
| match_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>' | |
| model_tournament_table.append(match_results) | |
| dataframe = pd.DataFrame.from_records(model_tournament_table) | |
| extra_attributes_map_word_to_header = { | |
| "model": "Competitor", | |
| } | |
| first_attributes = [ | |
| "model", | |
| ] | |
| df_order = [ | |
| key | |
| for key in dict.fromkeys( | |
| first_attributes | |
| + sorted( | |
| list(self.TASKS_METADATA.keys()) | |
| + list(dataframe.columns) | |
| ) | |
| ).keys() | |
| if key in dataframe.columns | |
| ] | |
| dataframe = dataframe[df_order] | |
| attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()} | |
| attributes_map_word_to_header.update(extra_attributes_map_word_to_header) | |
| dataframe = dataframe.rename( | |
| columns=attributes_map_word_to_header | |
| ) | |
| dataframe = dataframe.style.apply(self._model_tournament_table_highlight_true_and_false, axis=None) | |
| return dataframe | |
| def get_leaderboard(self, pre_submit=None, category=None): | |
| with self.var_lock.ro: | |
| tournament_results = pre_submit.tournament_results if pre_submit else self.tournament_results | |
| category = category if category else self.TASKS_CATEGORY_OVERALL | |
| if len(tournament_results) == 0: | |
| return pd.DataFrame(columns=['No submissions yet']) | |
| else: | |
| processed_results = [] | |
| for submission_id in tournament_results.keys(): | |
| if submission_id not in self.submission_id_to_data: | |
| if pre_submit and submission_id == pre_submit.submission_id: | |
| data = json.load(open(pre_submit.file)) | |
| else: | |
| raise gr.Error(f"Internal error: Submission [{submission_id}] not found") | |
| else: | |
| data = self.submission_id_to_data[submission_id] | |
| if submission_id != data["metadata"]["submission_id"]: | |
| raise gr.Error(f"Proper submission [{submission_id}] not found") | |
| local_results = {} | |
| win_score = {} | |
| visible_metrics_map_word_to_header = {} | |
| for task in self.TASKS_METADATA.keys(): | |
| task_category = self.TASKS_METADATA[task]["category"] | |
| if category not in (self.TASKS_CATEGORY_OVERALL, task_category): | |
| continue | |
| else: | |
| # tournament_results | |
| num_of_competitors = 0 | |
| num_of_wins = 0 | |
| for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self | |
| num_of_competitors += 1 | |
| if tournament_results[submission_id][competitor_id][task]["significant"]: | |
| num_of_wins += 1 | |
| task_score = num_of_wins / num_of_competitors * 100 if num_of_competitors > 0 else 100 | |
| win_score.setdefault(task_category, []).append(task_score) | |
| if category == task_category: | |
| local_results[task] = task_score | |
| for metric in VISIBLE_METRICS: | |
| visible_metrics_map_word_to_header[task + "_" + metric] = self.TASKS_METADATA[task]["abbreviation"] + " " + metric | |
| metric_value = data['results'][task].get(metric) | |
| if metric_value is not None: | |
| local_results[task + "_" + metric] = metric_value if metric == "word_perplexity" else metric_value * 100 | |
| break # Only the first metric of every task | |
| for c in win_score: | |
| win_score[c] = sum(win_score[c]) / len(win_score[c]) | |
| if category == self.TASKS_CATEGORY_OVERALL: | |
| for c in win_score: | |
| local_results[c] = win_score[c] | |
| local_results["average_score"] = sum(win_score.values()) / len(win_score) | |
| else: | |
| local_results["average_score"] = win_score[category] | |
| model_link = data["metadata"]["link_to_model"] | |
| model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"] | |
| model_title_abbr_team_name = self.abbreviate(data["metadata"]["team_name"], 28) | |
| model_title_abbr_model_name = self.abbreviate(data["metadata"]["model_name"], 28) | |
| model_title_abbr_html = f'<div style="font-size: 10px;">{xmlAndMarkdownEscape(model_title_abbr_team_name)}</div>{xmlAndMarkdownEscape(model_title_abbr_model_name)}' | |
| local_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{model_title_abbr_html}</a>' | |
| release = data["metadata"].get("submission_timestamp") | |
| release = time.strftime("%Y-%m-%d", time.gmtime(release)) if release else "N/A" | |
| local_results["release"] = release | |
| local_results["model_type"] = data["metadata"]["model_type"] | |
| local_results["parameters"] = data["metadata"]["parameters"] | |
| if pre_submit and submission_id == pre_submit.submission_id: | |
| processed_results.insert(0, local_results) | |
| else: | |
| processed_results.append(local_results) | |
| dataframe = pd.DataFrame.from_records(processed_results) | |
| extra_attributes_map_word_to_header = { | |
| "model": "Model", | |
| "release": "Release", | |
| "average_score": "Average ⬆️", | |
| "team_name": "Team name", | |
| "model_name": "Model name", | |
| "model_type": "Type", | |
| "parameters": "# θ (B)", | |
| "input_length": "Input length (# tokens)", | |
| "precision": "Precision", | |
| "description": "Description", | |
| "link_to_model": "Link to model" | |
| } | |
| first_attributes = [ | |
| "model", | |
| "release", | |
| "model_type", | |
| "parameters", | |
| "average_score", | |
| ] | |
| df_order = [ | |
| key | |
| for key in dict.fromkeys( | |
| first_attributes | |
| + sorted( | |
| list(self.TASKS_METADATA.keys()) | |
| + list(dataframe.columns) | |
| ) | |
| ).keys() | |
| if key in dataframe.columns | |
| ] | |
| dataframe = dataframe[df_order] | |
| attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.TASKS_METADATA.items()} | |
| attributes_map_word_to_header.update(extra_attributes_map_word_to_header) | |
| attributes_map_word_to_header.update(visible_metrics_map_word_to_header) | |
| dataframe = dataframe.rename( | |
| columns=attributes_map_word_to_header | |
| ) | |
| return dataframe | |
| def start_tournament(self, new_submission_id, new_model_file): | |
| with self.var_lock.ro: | |
| new_tournament = copy.deepcopy(self.tournament_results) | |
| new_tournament[new_submission_id] = {} | |
| new_tournament[new_submission_id][new_submission_id] = { | |
| task: False for task in self.TASKS_METADATA.keys() | |
| } | |
| rest_of_competitors = list(self.submission_ids - {new_submission_id}) # without self | |
| num_of_competitors = len(rest_of_competitors) | |
| result_url = {} | |
| result_inverse_url = {} | |
| while rest_of_competitors: | |
| next_competitors = [] | |
| while rest_of_competitors: | |
| if len(next_competitors) < 5: # 5*2==10 tasks | |
| next_competitors.append(rest_of_competitors.pop()) | |
| else: | |
| break | |
| for competitor_id in next_competitors: | |
| result_url[competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[competitor_id]) | |
| result_inverse_url[competitor_id] = check_significance_send_task(self.submission_id_to_file[competitor_id], new_model_file) | |
| while next_competitors: | |
| competitor_id = next_competitors.pop(0) | |
| result = check_significance_wait_for_result(result_url.pop(competitor_id)) | |
| result_inverse = check_significance_wait_for_result(result_inverse_url.pop(competitor_id)) | |
| if rest_of_competitors: | |
| new_competitor_id = rest_of_competitors.pop() | |
| next_competitors.append(new_competitor_id) | |
| result_url[new_competitor_id] = check_significance_send_task(new_model_file, self.submission_id_to_file[new_competitor_id]) | |
| result_inverse_url[new_competitor_id] = check_significance_send_task(self.submission_id_to_file[new_competitor_id], new_model_file) | |
| new_tournament[new_submission_id][competitor_id] = result | |
| new_tournament[competitor_id][new_submission_id] = result_inverse | |
| num_of_competitors_done = num_of_competitors - len(next_competitors) - len(rest_of_competitors) | |
| gr.Info(f"Tournament: {num_of_competitors_done}/{num_of_competitors} = {(num_of_competitors_done) * 100 // num_of_competitors}% done") | |
| return new_tournament | |
| def abbreviate(s, max_length, dots_place="center"): | |
| if len(s) <= max_length: | |
| return s | |
| else: | |
| if max_length <= 1: | |
| return "…" | |
| elif dots_place == "begin": | |
| return "…" + s[-max_length + 1:].lstrip() | |
| elif dots_place == "center" and max_length >= 3: | |
| max_length_begin = max_length // 2 | |
| max_length_end = max_length - max_length_begin - 1 | |
| return s[:max_length_begin].rstrip() + "…" + s[-max_length_end:].lstrip() | |
| else: # dots_place == "end" | |
| return s[:max_length - 1].rstrip() + "…" | |
| def create_submission_id(metadata): | |
| # Délka ID musí být omezena, protože se používá v názvu souboru | |
| submission_id = "_".join([metadata[key][:7] for key in ( | |
| "team_name", | |
| "model_name", | |
| "model_predictions_sha256", | |
| "model_results_sha256", | |
| )]) | |
| submission_id = submission_id.replace("/", "_").replace("\n", "_").strip() | |
| return submission_id | |
| def get_sha256_hexdigest(obj): | |
| data = json.dumps( | |
| obj, | |
| separators=(',', ':'), | |
| sort_keys=True, | |
| ensure_ascii=True, | |
| ).encode() | |
| result = hashlib.sha256(data).hexdigest() | |
| return result | |
| PreSubmit = namedtuple('PreSubmit', 'tournament_results, submission_id, file') | |
| def prepare_model_for_submission(self, file, metadata) -> PreSubmit: | |
| with open(file, "r") as f: | |
| data = json.load(f) | |
| data["metadata"] = metadata | |
| metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"]) | |
| metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"]) | |
| submission_id = self.create_submission_id(metadata) | |
| metadata["submission_id"] = submission_id | |
| metadata["submission_timestamp"] = time.time() # timestamp | |
| with open(file, "w") as f: | |
| json.dump(data, f, separators=(',', ':')) # compact JSON | |
| while True: | |
| with self.pre_submit_lock: | |
| if self.pre_submit == None: | |
| gr.Info('Running tournament...', duration=15) | |
| self.update_leaderboard() | |
| tournament_results = self.start_tournament(submission_id, file) | |
| self.pre_submit = self.PreSubmit(tournament_results, submission_id, file) | |
| break | |
| gr.Info("Waiting in queue...", duration=5) | |
| time.sleep(10) | |
| return self.pre_submit | |
| def save_pre_submit(self): | |
| with self.pre_submit_lock: | |
| if self.pre_submit: | |
| tournament_results, submission_id, file = self.pre_submit | |
| self._upload_submission(submission_id, file) | |
| self._upload_tournament_results(tournament_results) | |
| self.pre_submit = None | |
| self.update_leaderboard() | |
| def _upload_submission(self, submission_id, file): | |
| api.upload_file( | |
| path_or_fileobj=file, | |
| path_in_repo=f"data/{submission_id}.json", | |
| repo_id=self.SERVER_ADDRESS, | |
| repo_type=self.REPO_TYPE, | |
| token=HF_TOKEN, | |
| ) | |
| def _upload_tournament_results(self, tournament_results): | |
| # Temporary save tournament results | |
| with self.results_dataset_local_snapshot_lock.rw: | |
| tournament_results_path = os.path.join(self.results_dataset_local_snapshot, "tournament.json") | |
| with open(tournament_results_path, "w") as f: | |
| json.dump(tournament_results, f, sort_keys=True, indent=2) # readable JSON | |
| api.upload_file( | |
| path_or_fileobj=tournament_results_path, | |
| path_in_repo="tournament.json", | |
| repo_id=self.SERVER_ADDRESS, | |
| repo_type=self.REPO_TYPE, | |
| token=HF_TOKEN, | |
| ) | |
| def get_model_detail(self, submission_id): | |
| with self.var_lock.ro: | |
| if submission_id not in self.submission_id_to_data: | |
| raise gr.Error(f"Submission [{submission_id}] not found") | |
| else: | |
| data = self.submission_id_to_data[submission_id] | |
| return data["metadata"] | |